Mechanism of Electronically Enhanced Defect Reactions in Semiconductors

Yuzo Shinozuka

Faculty of Systems Engineering, Wakayama University, Sakaedani 930 Wakayama 640-8510, JAPAN e-mail: yuzo@sys.wakayama-u.ac.jp

Keywords: defect reaction, lattice relaxation, multiphonon process, phonon kick, coherent capture

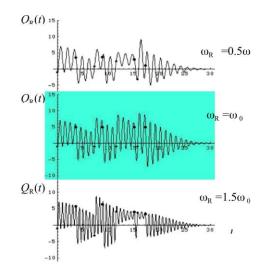
Electronic transitions sometimes induce or enhance defect reactions in semiconductors, such as impurity diffusion, structural change of a defect (creation, annihilation and multiplication), and climb and glide motions of dislocation [1]. It has been suggested that the transient vibration induced by a carrier capture enhances the probability of a following capture of the opposite Recently Shinozuka and Karatsu have carrier [2.3]. simulated the transient lattice vibration induced by successive captures and it effect on the next capture process [4]. If N pairs of electrons and holes are sequentially captured by a defect, each occurred at $t_{el} < t_{hl} <$ $t_{e2} < t_{h2} < \ldots < t_{eN} < t_{hN}$, the time evolution of $Q_1(t)$ for $t_{hN} < t$ is given by

$$Q_{1}(t) = Q_{1}^{\text{before}}(t) + \overline{Q}_{1} \left\{ -\sum_{j}^{N} \exp[-\Delta\omega^{2}(t - t_{ej})^{2} / 4] \cos\omega_{0}(t - t_{ej}) + \sum_{j}^{N} \exp[-\Delta\omega^{2}(t - t_{hj})^{2} / 4] \cos\omega_{0}(t - t_{hj}) \right\}, \quad (1)$$

for a system' whose phonon frequency ω_k distribution is given by a Gaussian with the central frequency ω_0 and the width $\Delta\omega$. Here $Q_1^{\text{before}}(t)$ is the time dependence if all the captures of N electron-hole pairs would not have occurred at all. Thus, $Q_1(t)$ is shown to be a linear combination of damping oscillations, each starts at time t_{ej} or t_{hj} and lasts in the same duration $\tau \sim 2\pi/\Delta\omega$. It should be reminded that the capture time t_{ej} and t_{hj} do not take an arbitrary value but should be obeyed by probability.

We will discuss the effect of the transient vibration (eq. 1) to defect reactions using following assumptions:

- a) The first electron capture takes place by a thermal activation Q_1 to Q_e with the activation energy E_e^{act} .
- b) If $Q_1(t)$ crosses at $Q_e(Q_h)$, there is a probability $p_e(p_h)$ per time to capture an electron (hole) nonradiatively. $p_e(p_h) \sim \omega_{\Box}/2\pi$ in the adiabatic limit.
- c) The defect reaction coordinate is given by $Q_{\rm R}(t) = \sum_k f_k q_k(t)$, whose frequency distribution is a Gaussian


with the central frequency ϖ_{R} and the width $\Delta \varpi.$

d) If $Q_{\rm R}(t)$ crosses the critical point $Q_{\rm c}$, the defect reaction takes place.

We have found that every capture process enhances the vibration of $Q_1(t)$. On the other hand, it is not so for $Q_R(t)$ in $\omega_0 \neq \omega_R$ case, because the timing of push and pull for $Q_R(t)$ is out of phase (Fig.1).

Let us discuss the possibility of recombination-

enhanced defect reaction in connection with the transient induced lattice vibration. The condition for the coherent captures turns out to be $p_{\rm e}\tau \Box \sim p_{\rm h}\tau \sim \Box \omega_{\Box} \Box \Delta \omega > 1$. Then if N pairs of electron and hole are captured within a short period $\sim 2\pi/\Delta \omega$, the amplitude of the interaction mode $Q_1(t)$ increases remarkably. If the central frequency $\omega_{\Box} \Box \odot \odot$ of the reaction coordinate $Q_{\rm R}$ is not so much different from $\omega_{\Box} \odot$ of the interaction mode Q_1 , more than the band gap energy $E_{\rm g} = E_{\rm e}^{\rm th} + E_{\rm h}^{\rm th}$ can be transformed by a series of coherent carrier captures into the lattice vibration energy. The defect reaction rate is given by $(\omega_{\Box}/2\pi)\exp(-E_i^{\rm act}/k_{\rm B}T)$ because only the first capture $(i={\rm e}, {\rm h})$ is to be activated. On the other hand, if $\omega_{\rm R} \Box$ is much different from $\omega_{\Box} \Box$ the rate is $(\omega_{\Box}/2\pi)\exp(-U_0^*/k_{\rm B}T)$ with $U_0-(E_i^{\rm act}+E_i^{\rm th})$ because the N phonon-kick's are out of phase.

Fig. 1 The time evolution of $Q_{\rm R}(t)$. Large (small) circle indicates the capture time $t_{\rm ei}$ ($t_{\rm hi}$) for an electron (hole).

- O. Ueda, "Reliability and degradation of III-V optical devices" (Artech House Publishers) 1996.
- Y. Shinozuka, *Defects in Optoelectronic Materials*, ed. K. Wada and S. W. Pang (Gordon and Bleach Science Publisher, 2001) Chapter 8.
- Y. Shinozuka: J. Phys. Soc. Jpn. 51 (1982) 2852 ; Jpn. J. Appl. Phys. 32 (1993) 4560.
- 4. Y. Shinozuka and T. Karatsu: Physica B273-274 (1999) 999.