

Modelling of bulk superconductor magnetisation: a review

Dr Mark Ainslie

Engineering & Physical Sciences Research Council (EPSRC)
Research Fellow

Bulk Superconductivity Group, Department of Engineering

Presentation Outline

- Overview of modelling bulk superconductor magnetisation
- Case studies:
 - Multi-pulse, pulsed field magnetisation (PFM) of bulk hightemperature superconductors
 - Split coil PFM with an iron yoke
 - Field cooling (FC) magnetisation of iron-pnictide (Ba122) bulks

- Bulk superconducting materials can 'trap' large magnetic fields > 17 T
- Achieved by pinning penetrated magnetic field (quantised flux lines)
 → macroscopic electrical currents
- Magnetisation <u>increases</u> with sample volume

A large, single grain bulk superconductor

- Bulk superconducting materials can 'trap' large magnetic fields > 17 T
- Achieved by pinning penetrated magnetic field (quantised flux lines)
 → macroscopic electrical currents
- Magnetisation <u>increases</u> with sample volume
- Trapped field given by

$$\begin{aligned} \textbf{\textit{B}}_{\text{trap}} &= \textit{k} \; \mu_{0} \; \textit{J}_{c} \; \textit{R} \\ where \qquad k &= \frac{t_{\text{B}}}{2R} \cdot \ln \left(\frac{R + \sqrt{R^{2} + t_{\text{B}}^{2}}}{t_{\text{B}}} \right) \end{aligned}$$

Typical trapped magnetic field profile of a bulk superconductor

$$B_{\text{trap}} = k \mu_0 J_c R$$

where
$$k = \frac{t_{\rm B}}{2R} \cdot \ln \left(\frac{R + \sqrt{R^2 + t_{\rm B}^2}}{t_{\rm B}} \right)$$

- From Bean model (infinite slab) + Biot-Savart law
- Example of an <u>analytical</u> model
 - Easier to deal with & faster

0.8

- Rely on specific simplified geometries & simplified, homogeneous assumptions:
 - Constant / uniform J_c , no frequency / time dependence, etc.

$$B_{\text{trap}} = k \mu_0 \mathcal{J}_{c} R$$

- Candidate materials must be able to:
 - Pin magnetic flux effectively
 - Carry large current density, J_c, over large length scales
 - Be insensitive to application of large magnetic fields, J_c(B)

Example field dependence of critical current density, $J_c(B)$, for bulk YBCO

Magnetisation of Bulk Superconductors

- Three magnetisation techniques:
 - Field Cooling (FC)
 - Zero Field Cooling (ZFC)
 - Pulsed Field Magnetisation (PFM)
- To trap B_{trap}, need at least B_{trap} or higher
 - FC and ZFC require large magnetising coils, long magnetizing times
 - Impractical for applications/devices → PFM

- Numerical models can simulate practical & complex situations, playing a number of crucial roles:
 - Simulate accurate magnetic field, current, temperature, mechanical stress distributions
 - Interpret experimental results & physical mechanisms of bulk superconductor magnetisation
 - Design & predict performance of magnetising fixtures & techniques
 - Design & predict performance of practical bulk superconductor-based devices

BULK GEOMETRY & MAGNETISATION FIXTURE

ELECTROMAGNETIC FORMULATION

THERMAL EQUATIONS & PROPERTIES

 $J_{c}(B, T)$

E-J POWER LAW

- 2D axisymmetric generally sufficient for cylindrical bulks with a homogeneous J_c distribution
- 3D required for an inhomogeneous J_c distribution around the ab-plane; for non-symmetric shapes

BULK GEOMETRY & MAGNETISATION FIXTURE

ELECTROMAGNETIC FORMULATION

THERMAL EQUATIONS & PROPERTIES

 $J_{c}(B, T)$

E-J POWER LAW

- Magnetising fixture: uniform boundary conditions or inserting a copper coil sub-domain
- Cooling: using a cold head + vacuum chamber or submersion in liquid cryogen

BULK GEOMETRY & MAGNETISATION FIXTURE

Finite element method is commonly used & well developed (other techniques do exist)

ELECTROMAGNETIC FORMULATION

Governing equations:

Maxwell's equations (*H* formulation)

THERMAL EQUATIONS & PROPERTIES

$$abla imes extbf{E} = -rac{\partial extbf{B}}{\partial t} = -rac{\partial (\mu_0 \mu_r extbf{H})}{\partial t}$$
 Faraday's Law $abla imes extbf{H} = extbf{J}$ Ampere's Law

 $J_{c}(B, T)$

Other formulations also exist (A-V, $\textbf{T-}\Omega$, Campbell's equation)

E-J POWER LAW

BULK GEOMETRY & MAGNETISATION FIXTURE

ELECTROMAGNETIC FORMULATION

THERMAL EQUATIONS & PROPERTIES

 $J_{c}(B, T)$

E-J POWER LAW

Thermal behaviour needs to be modelled when the bulk experiences a significant change in temperature

e.g., during PFM, modelling complete FC magnetisation process

Governing equations:

$$\rho \cdot C \frac{\mathrm{d}T}{\mathrm{d}t} = \nabla \cdot (k \nabla T) + Q$$

$$Q = E \cdot J$$

 ρ = mass density, C = specific heat, κ = thermal conductivity, Q = heat source

BULK GEOMETRY & MAGNETISATION FIXTURE

ELECTROMAGNETIC FORMULATION

THERMAL EQUATIONS & PROPERTIES

 $J_{c}(B, T)$

E-J POWER LAW

Can use measured experimental data + fitting function or interpolation over a specific temperature range

Can choose constant parameters for C, κ for $T = T_{op}$ as a reasonable approximation

BULK GEOMETRY & MAGNETISATION FIXTURE

HTS materials Kim-like model:

$$J_{\rm c} = \frac{J_{\rm c0}}{\left(1 + \frac{B}{B_0}\right)^{\alpha}}$$

ELECTROMAGNETIC FORMULATION

Fishtail effect: $J_c(B) = J_{c1} \exp\left(-\frac{B}{B_L}\right) + J_{c2} \frac{B}{B_{\text{max}}} \exp\left[\frac{1}{y}\left(1 - \left(\frac{B}{B_{\text{max}}}\right)^y\right)\right]$

THERMAL EQUATIONS & PROPERTIES

 $J_{c}(B, T)$

E-J POWER LAW

MgB₂ materials

Field, H

$$J_{c}(B, T) = J_{c0}(T) \exp\left(-\frac{B}{B_0}\right)^{a}$$

$$J_{c0}(T) = \alpha \left[1 - \left(\frac{T}{T_c} \right)^2 \right]^{1.5}$$

BULK GEOMETRY & MAGNETISATION FIXTURE

... or <u>direct interpolation</u>

1E+09

1E+07

 $GdBa_2Cu_3O_{7-\delta}$ (15wt% Ag)

o 85 K □ 80 K ◇ 77 K △ 70 K o 60 K □ 50 K

8

10

40 K

-- Data Fit

4.2 K (Lower)

-10 K (Lower) 20 K (Lower) 25 K (Lower)

ELECTROMAGNETIC FORMULATION

> **THERMAL EQUATIONS & PROPERTIES**

> > $J_{c}(B, T)$

E-J POWER LAW

 $Ba_{0.6}K_{0.4}Fe_2As_2$ (Ba122)

B [T]

BULK GEOMETRY & MAGNETISATION FIXTURE

ELECTROMAGNETIC FORMULATION

THERMAL EQUATIONS & PROPERTIES

 $J_{c}(B, T)$

E-J POWER LAW

E-J power law

- Conventional materials → non-linear permeability, linear resistivity
- Superconductors → linear permeability (μ₀), non-linear resistivity
- Non-linearity is extreme: power law with n > 20

I-V curves for different n values

$$\mathbf{E} = E_0 \left(\frac{J}{J_c}\right)^{n-1} \frac{\mathbf{J}}{J_c}$$

$$\mathbf{E} = \rho \mathbf{J}$$

$$\mathbf{E} = E_0 \left(\frac{J}{J_c}\right)^{n-1} \mathbf{J}$$

$$\mathbf{J}_c$$

Case study #1:

Multi-pulse, pulsed field magnetisation (PFM) of bulk high-temperature superconductors

Pulsed Field Magnetisation

- PFM technique: compact, mobile, relatively inexpensive
- Main issue: B_{trap} [PFM] < B_{trap} [FC], [ZFC]
 - Temperature rise ΔT due to rapid movement of magnetic flux
- Record PFM trapped field: 5.2 T @ 29 K
 Top surface of 45 mm diameter Gd-Ba-Cu-O
 Fujishiro et al. Physica C 2006
 - Record trapped field by FC: 17.6 T @ 26 K
 Centre of 2 x 25 mm diameter Gd-Ba-Cu-O
 Durrell et al. Supercond. Sci. Technol. 2014

Pulsed Field Magnetisation

- Many considerations for PFM:
 - Pulse magnitude, pulse duration, <u>temperature(s)</u>, <u>number of pulses</u>, type of magnetising coil(s), use of ferromagnetic materials
 - Dynamics of magnetic flux during PFM process
- Multi-pulse PFM: effective in increasing trapped field/flux

Fujishiro et al. Physica C 2006

Zhou et al. Appl. Phys. Lett. 2017

Modelling Trapped Field Capability (FC/ZFC)

Model #1

- Stationary
- Comsol Multiphysics
 - 2D axisymmetric
 - AC/DC module
 - Magnetic Field (mf) interface
 - External Current Density node
- No flux creep
- Time taken: ~ 2-3 seconds

Model #2

- Time-dependent
- Comsol Multiphysics
 - 2D axisymmetric
 - AC/DC module
 - Magnetic Field Formulation (mfh) interface
- E-J power law, $E \alpha J^n$ (flux creep)
- Apply + remove background field
- Time taken: up to 1-2 hours

Modelling Trapped Field Capability

$GdBa_2Cu_3O_{7-\delta}$ (15wt% Ag)

Magnetisation	Time	Trapped Field	
77 K			
FC		1.544 T	
ZFC [5 T]	t = 0 min	1.546 T	
	t = 10 min	1.263 T	
	t = 20 min	1.223 T	79%
65 K			
FC		3.826 T	
ZFC [10 T]	t = 0 min	3.827 T	
	t = 10 min	3.256 T	
	t = 20 min	3.158 T	82.5%
	50 K		
FC		7.449 T	
ZFC [20 T]	t = 0 min	7.422 T	
	t = 10 min	6.577 T	
	t = 20 min	6.405 T	86%

PFM Modelling Framework

Electromagnetic properties modelled as Model #2 (ZFC); magnetising fixture assumed as solenoid coil:

$$I_{pulse}(t) = N \cdot I_0 \frac{t}{\tau} \exp\left(1 - \frac{t}{\tau}\right)$$
 $\tau = 15 \text{ ms}$

Thermal behaviour:

$$\rho \cdot C \frac{\mathrm{d}T}{\mathrm{d}t} = \nabla \cdot (k \nabla T) + Q$$

$$Q = E \cdot J$$
 Heat source, coupling with EM model + $J_{c}(B, T)$

 ρ = mass density (bulk 5900 kg/m³, indium 7310 kg/m³)

C = specific heat (measured, temperature-dependent)

 κ = thermal conductivity:

 $\kappa_{ab} = 20 \text{ W/(m·K)}, \kappa_{c} = 4 \text{ W/(m·K)}, \kappa_{indium} = 0.5 \text{ W/(m·K)}$

PFM Single Pulse Results

- t = 120 s → flux creep relaxation & cooling back to operating temp.
- Percentage of ZFC(t = 20 min):
 - 77 K 85%
 - 65 K 49%
 - 50 K 29%

- Four specific cases as initial conditions for 2nd pulse:
 - Partially-magnetised (PM), socalled 'M-shaped' profile
 - Under-magnetised (UM)
 - Fully-magnetised (FM)
 - Over-magnetised (OM)

PFM 2nd Pulse Results

For all T, trapped field after 2nd pulse exhibits two particular characteristics:

- 1) Increased trapped field, B_t, when the bulk is fully magnetised; maximum value when the 1st pulse results in full magnetisation 2) Increased activation field: applied field,
- B_{app} , required to fully magnetise the sample

PFM 2nd Pulse: Magnetic Flux Penetration

- Why does this occur?
 - More difficult for magnetic flux to penetrate the sample due to existing trapped field
 - Existing, induced supercurrent flows in opposite direction

PFM 2nd Pulse: Thermal Behaviour

- Why does this occur?
 - Reduced dynamic movement of flux = lower temperature rise for equivalent next pulse
 - Can examine maximum average temperature, T_{ave,max}, during & after PFM:

♦ 5.5 T □ **4.5 T △ 4 T ○ 3 T**

Case study #2:

Split coil PFM with an iron yoke

Trapped field @ t = 300 ms

Trapped field & T_{ave} with time, incl. yoke removed

Ainslie, Fujishiro et al. Supercond. Sci. Technol. 29 (2016) 074003

Magnetic flux entry & exit during & after pulse – split coil with & without iron yoke

Case study #3:

Field cooling (FC) magnetisation of ironpnictide (Ba122) bulks

- Weiss et al. demonstrated > 1 T trapped in a stack of iron-pnictide (Ba122) bulks
- Advantages:
 - Low anisotropy
 - High upper critical magnetic field (H_{c2})
 - High homogeneity
 - Scalable, low-cost fabrication

Ainslie, Fujishiro, Yamamoto et al. Supercond. Sci. Technol. 30 (2017) 105009

- Same ZFC model as before
 - → approximates FC, applied field >> full penetration field
- n = 50
 - → observed flux creep much weaker than HTS bulks

Ainslie, Fujishiro, Yamamoto et al. Supercond. Sci. Technol. 30 (2017) 105009

- Same ZFC model as before
 - → approximates FC, applied field >> full penetration field
- n = 50
 - → observed flux creep much weaker than HTS bulks

Ainslie, Fujishiro, Yamamoto et al. Supercond. Sci. Technol. 30 (2017) 105009

Influence of geometric parameters can be predicted:

- With current state-of-the-art properties, > 2 T @ 5 K (> 1 T @ 20 K) for D = 50 mm
- Appropriate aspect ratio 1-1.5 (radius : thickness)

Ainslie, Fujishiro, Yamamoto et al. Supercond. Sci. Technol. 30 (2017) 105009

Summary

- Overview of numerical modelling of magnetisation
- Case studies:
 - Multi-pulse, pulsed field magnetisation (PFM) of bulk hightemperature superconductors
 - Split coil PFM with an iron yoke
 - Field cooling (FC) magnetisation of iron-pnictide (Ba122) bulks

Thank you for listening

