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Presentation Outline

• Overview of modelling bulk superconductor magnetisation

• Case studies:

• Multi-pulse, pulsed field magnetisation (PFM) of bulk high-
temperature superconductors

• Split coil PFM with an iron yoke

• Field cooling (FC) magnetisation of iron-pnictide (Ba122) bulks 
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Bulk Superconductors

• Bulk superconducting materials can 
‘trap’ large magnetic fields > 17 T

• Achieved by pinning penetrated 
magnetic field (quantised flux lines) 
 macroscopic electrical currents

• Magnetisation increases with 
sample volume

B S G

A large, single grain
bulk superconductor
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Typical trapped magnetic
field profile of a

bulk superconductor

Bulk Superconductors

• Bulk superconducting materials can 
‘trap’ large magnetic fields > 17 T

• Achieved by pinning penetrated 
magnetic field (quantised flux lines) 
 macroscopic electrical currents

• Magnetisation increases with 
sample volume

• Trapped field given by

Btrap = k µ0 Jc R

where
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Bulk Superconductors

Btrap = k µ0 Jc R

where

• From Bean model (infinite slab) +
Biot-Savart law

• Example of an analytical model

• Easier to deal with & faster

• Rely on specific simplified geometries & simplified, homogeneous 
assumptions:

• Constant / uniform Jc, no frequency / time dependence, etc.
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Bulk Superconductors

Btrap = k µ0 Jc R

• Candidate materials 
must be able to:

• Pin magnetic flux 
effectively

• Carry large current 
density, Jc, over large 
length scales

• Be insensitive to 
application of large 
magnetic fields, Jc(B)
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Example field dependence of critical
current density, Jc(B), for bulk YBCO
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Magnetisation of Bulk Superconductors

• Three magnetisation techniques:

• Field Cooling (FC)

• Zero Field Cooling (ZFC)

• Pulsed Field Magnetisation
(PFM)

• To trap Btrap, need at least Btrap or 
higher

• FC and ZFC require large 
magnetising coils, long 
magnetizing times

• Impractical for 
applications/devices  PFM
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ZFC FC
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Numerical Modelling of Magnetisation

• Numerical models can simulate practical & complex situations, 
playing a number of crucial roles:

• Simulate accurate magnetic field, current, temperature, mechanical 
stress distributions

• Interpret experimental results & physical mechanisms of bulk 
superconductor magnetisation

• Design & predict performance of magnetising fixtures & techniques

• Design & predict performance of practical bulk superconductor-based 
devices
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Numerical Modelling of Magnetisation

B S G

• 2D axisymmetric generally sufficient for cylindrical bulks 
with a homogeneous Jc distribution

• 3D required for an inhomogeneous Jc distribution around 
the ab-plane; for non-symmetric shapes

BULK GEOMETRY &
MAGNETISATION 

FIXTURE

ELECTROMAGNETIC 
FORMULATION

THERMAL 
EQUATIONS & 
PROPERTIES

Jc(B, T)

E-J POWER LAW
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Numerical Modelling of Magnetisation
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BULK GEOMETRY &
MAGNETISATION 

FIXTURE

ELECTROMAGNETIC 
FORMULATION

THERMAL 
EQUATIONS & 
PROPERTIES

Jc(B, T)

E-J POWER LAW

• Magnetising fixture: uniform boundary conditions or 
inserting a copper coil sub-domain

• Cooling: using a cold head + vacuum chamber or 
submersion in liquid cryogen
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Numerical Modelling of Magnetisation
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BULK GEOMETRY &
MAGNETISATION 

FIXTURE

ELECTROMAGNETIC 
FORMULATION

THERMAL 
EQUATIONS & 
PROPERTIES

Jc(B, T)

E-J POWER LAW

Ampere’s Law

Faraday’s Law
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Finite element method is commonly used & well 
developed (other techniques do exist)

Governing equations:
Maxwell’s equations (H formulation)

Other formulations also exist (A-V, T-Ω, Campbell’s 
equation)



Numerical Modelling of Magnetisation
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BULK GEOMETRY &
MAGNETISATION 

FIXTURE

ELECTROMAGNETIC 
FORMULATION

THERMAL 
EQUATIONS & 
PROPERTIES

Jc(B, T)

E-J POWER LAW

Thermal behaviour needs to be modelled when the 
bulk experiences a significant change in 
temperature
e.g., during PFM, modelling complete FC 
magnetisation process

Governing equations:

ρ = mass density, C = specific heat, κ = thermal 
conductivity, Q = heat source
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Numerical Modelling of Magnetisation
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BULK GEOMETRY &
MAGNETISATION 

FIXTURE

ELECTROMAGNETIC 
FORMULATION

THERMAL 
EQUATIONS & 
PROPERTIES

Jc(B, T)

E-J POWER LAW

Can use measured 
experimental data + fitting 
function or interpolation 
over a specific temperature 
range

Can choose constant 
parameters for C, κ for
T = Top as a reasonable 
approximation
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Numerical Modelling of Magnetisation
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BULK GEOMETRY &
MAGNETISATION 

FIXTURE

ELECTROMAGNETIC 
FORMULATION

THERMAL 
EQUATIONS & 
PROPERTIES

Jc(B, T)

E-J POWER LAW

HTS materials
Kim-like model:

Fishtail effect:

MgB2 materials

.
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Numerical Modelling of Magnetisation
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BULK GEOMETRY &
MAGNETISATION 

FIXTURE

ELECTROMAGNETIC 
FORMULATION

THERMAL 
EQUATIONS & 
PROPERTIES

Jc(B, T)

E-J POWER LAW
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GdBa2Cu3O7-δ (15wt% Ag)

Ba0.6K0.4Fe2As2 (Ba122)

… or direct interpolation



Numerical Modelling of Magnetisation

B S G

BULK GEOMETRY &
MAGNETISATION 

FIXTURE

ELECTROMAGNETIC 
FORMULATION

THERMAL 
EQUATIONS & 
PROPERTIES

Jc(B, T)

E-J POWER LAW

E-J power law
• Conventional materials  non-linear permeability, 

linear resistivity
• Superconductors  linear permeability (µ0),

non-linear resistivity
• Non-linearity is extreme: power law with n > 20

I-V curves for different n values

E = ρJ
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Case study #1:

Multi-pulse, pulsed field magnetisation 
(PFM) of bulk high-temperature 

superconductors

B S G65th JSAP Spring Meeting 2018



Pulsed Field Magnetisation

• PFM technique: compact, mobile, relatively inexpensive

• Main issue: Btrap [PFM] < Btrap [FC], [ZFC]

• Temperature rise ΔT due to rapid movement of magnetic flux

• Record PFM trapped field: 5.2 T @ 29 K
Top surface of 45 mm diameter Gd-Ba-Cu-O
Fujishiro et al. Physica C 2006

• Record trapped field by FC: 17.6 T @ 26 K
Centre of 2 x 25 mm diameter Gd-Ba-Cu-O
Durrell et al. Supercond. Sci. Technol. 2014
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Pulsed Field Magnetisation

• Many considerations for PFM:

• Pulse magnitude, pulse duration, temperature(s), number of pulses,
type of magnetising coil(s), use of ferromagnetic materials

• Dynamics of magnetic flux during PFM process

• Multi-pulse PFM: effective in increasing trapped field/flux

B S G
Fujishiro et al. Physica C 2006 Zhou et al. Appl. Phys. Lett. 2017
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Modelling Trapped Field Capability (FC/ZFC)
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Model #1
• Stationary
• Comsol Multiphysics

• 2D axisymmetric
• AC/DC module
• Magnetic Field (mf) interface
• External Current Density node

• No flux creep
• Time taken: ~ 2-3 seconds

Model #2
• Time-dependent
• Comsol Multiphysics

• 2D axisymmetric
• AC/DC module
• Magnetic Field Formulation (mfh) interface

• E-J power law, E α Jn (flux creep)
• Apply + remove background field
• Time taken: up to 1-2 hours  
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Modelling Trapped Field Capability
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Results

Magnetisation Time Trapped Field

77 K

FC --- 1.544 T

ZFC [5 T]
t = 0 min 1.546 T

t = 10 min 1.263 T
t = 20 min 1.223 T

65 K
FC --- 3.826 T

ZFC [10 T]
t = 0 min 3.827 T

t = 10 min 3.256 T
t = 20 min 3.158 T

50 K

FC --- 7.449 T

ZFC [20 T]
t = 0 min 7.422 T

t = 10 min 6.577 T
t = 20 min 6.405 T

79%

82.5%

86%

GdBa2Cu3O7-δ (15wt% Ag)
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PFM Modelling Framework
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Electromagnetic properties modelled as Model #2 (ZFC); 
magnetising fixture assumed as solenoid coil:

Thermal behaviour:

ρ = mass density (bulk 5900 kg/m3, indium 7310 kg/m3)
C = specific heat (measured, temperature-dependent)
κ = thermal conductivity:
κab = 20 W/(m·K), κc = 4 W/(m·K), κindium = 0.5 W/(m·K)

Heat source,
coupling with EM model + Jc(B, T)

τ = 15 ms
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PFM Single Pulse Results
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• t = 120 s  flux creep relaxation & 
cooling back to operating temp.

• Percentage of ZFC(t = 20 min):
• 77 K 85%
• 65 K 49%
• 50 K 29%

• Four specific cases as initial 
conditions for 2nd pulse:

• Partially-magnetised (PM), so-
called ‘M-shaped’ profile

• Under-magnetised (UM)
• Fully-magnetised (FM)
• Over-magnetised (OM)
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PFM 2nd Pulse Results

B S G

For all T, trapped field after 2nd pulse exhibits 
two particular characteristics:
1) Increased trapped field, Bt, when the bulk 
is fully magnetised; maximum value when 
the 1st pulse results in full magnetisation
2) Increased activation field: applied field, 
Bapp, required to fully magnetise the sample 

77 K

65 K

50 K
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PFM 2nd Pulse: Magnetic Flux Penetration
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• Why does this occur?
• More difficult for magnetic flux to 

penetrate the sample due to 
existing trapped field

• Existing, induced supercurrent 
flows in opposite direction
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PFM 2nd Pulse: Thermal Behaviour
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• Why does this occur?
• Reduced dynamic movement of 

flux = lower temperature rise for 
equivalent next pulse

• Can examine maximum average 
temperature, Tave,max, during & 
after PFM:
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Case study #2:

Split coil PFM with an iron yoke
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Split Coil PFM with an Iron Yoke
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Two GdBa2Cu3O7-δ (15wt% Ag) samples:
30 mm diameter, 15 mm thickness
#476 sample   Bt = 6 T      (40 K) 3.11 T (65 K)
#477 sample   Bt = 5.44 T (40 K) 2.02 T (65 K)

Ainslie, Fujishiro et al. Supercond. Sci. Technol. 29 (2016) 074003
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Split Coil PFM with an Iron Yoke
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Ainslie, Fujishiro et al. Supercond. Sci. Technol. 29 (2016) 074003
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Split Coil PFM with an Iron Yoke
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Split coil Solenoid coil

Ainslie, Fujishiro et al. Supercond. Sci. Technol. 29 (2016) 074003
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Split Coil PFM with an Iron Yoke
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Split Coil PFM with an Iron Yoke
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Trapped field @ t = 300 ms Trapped field & Tave with time, incl. yoke removed

Ainslie, Fujishiro et al. Supercond. Sci. Technol. 29 (2016) 074003
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Split Coil PFM with an Iron Yoke
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Magnetic flux entry & exit during & after pulse – split coil with & without iron yoke

z

r

Ainslie, Fujishiro et al. Supercond. Sci. Technol. 29 (2016) 074003
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Case study #3:

Field cooling (FC) magnetisation of iron-
pnictide (Ba122) bulks 
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Modelling Iron-Pnictide Bulks

• Weiss et al. demonstrated > 1 T trapped
in a stack of iron-pnictide (Ba122) bulks

• Advantages:
• Low anisotropy
• High upper critical magnetic field (Hc2)
• High homogeneity
• Scalable, low-cost fabrication

Ainslie, Fujishiro, Yamamoto et al. Supercond. Sci. Technol. 30 (2017) 105009
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Modelling Iron-Pnictide Bulks

• Same ZFC model as before
 approximates FC, applied field >> full penetration field

• n = 50
 observed flux creep much weaker than HTS bulks

Ainslie, Fujishiro, Yamamoto et al. Supercond. Sci. Technol. 30 (2017) 105009

z = ±0.5 mm
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Modelling Iron-Pnictide Bulks

• Same ZFC model as before
 approximates FC, applied field >> full penetration field

• n = 50
 observed flux creep much weaker than HTS bulks

Ainslie, Fujishiro, Yamamoto et al. Supercond. Sci. Technol. 30 (2017) 105009

H2

H1
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Modelling Iron-Pnictide Bulks

Influence of geometric parameters can be predicted:
Diameter dependence Thickness dependence

• With current state-of-the-art properties, > 2 T @ 5 K (> 1 T @ 20 K) for D = 50 mm
• Appropriate aspect ratio 1-1.5 (radius : thickness)

Ainslie, Fujishiro, Yamamoto et al. Supercond. Sci. Technol. 30 (2017) 105009

10 mm thickness



Summary

• Overview of numerical modelling of magnetisation

• Case studies:

• Multi-pulse, pulsed field magnetisation (PFM) of bulk high-
temperature superconductors

• Split coil PFM with an iron yoke

• Field cooling (FC) magnetisation of iron-pnictide (Ba122) bulks 
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Thank you for listening
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