◇講演会論文集バックナンバー 論文集は各6000円です。 事務局までお問合せください.

第47回光	光波センシング技術研究会 2011年6月14~15日	
LST47-1	イントロダクトリートーク — 重要度が増す光ファイバセンシング技術 —	中村健太郎(東工大)
LST47-2	波長可変狭線幅レーザを用いた地球物理研究用ナノストレーン分解能FBG静的歪	劉慶文、何祖源、徳永朋祥、保立和夫(東大)
LST47-3	長周期光ファイバグレーティングにおける透過スペクトルの屈曲依存性を利用した技	・動センシング田中哲、和田篤、高橋信明(防衛大)
LST47-4	ブリルアン散乱信号のモニタリングによる光ファイバ間の突合せ接合の光軸調整	
LST47-5	ポンプ・プローブ時分割発生方式BOCDAにおけるランダムアクセス機能の高速化.	沼澤正和、岸眞人、何祖源、保立和夫(東大)
LST47-6	招待講演 光ファイバ神経網技術の機能進化	
LST47-7	倍率調整による波長差推定法を用いた2波長ディジタルホログラフィ干渉法	
LST47-8	適応フィルタを利用した2波長半導体レーザーヘテロダイン干渉計	
LST47-9	干渉次数判別による複数の次数を利用した形状計測範囲の拡大	鈴木康平、塩田達俊(長岡技科大)
LST47-10	2Tbpsデジタル光信号の生成と多波長同時へテロダイン検波法による周波数領域光波	安形計測山崎俊明、小野浩司、塩田達俊(長岡技科大)
LST47-11	楕円アルゴリズムによる逆反射散乱光の不均一散乱媒質内における光伝播	館泉 ¹ 、石井勝弘 ² 、岩井俊昭 ¹ (農工大 ¹ 、光産業創成大 ²)
LST47-12	国際会議報告 OFS-21報告	田中洋介 (農工大)
LST47-13	招待講演 分布型光ファイバセンシング技術の動向と応用	
LST47-14	横荷重を受ける長尺FBGの反射特性分布	村山英晶¹、和田大地¹、井川寛隆²(東大¹、JAXA²)
LST47-15	FBG センサによる建築構造ヘルスモニタリング	岩城英朗(清水建設(株))
LST47-16	招待講演 河川管理・河川防災に必要とされる技術	
LST47-17	回転ミラーを用いた光ディレイライン	松本卓三、小野寺理文(職業大)
LST47-18	サブ波長格子を用いたスパイラル位相板	中村俊也、小野寺理文、田村仁志(職業大)
LST47-19	液晶偏光変調器を用いた高速・高精度化旋光計田中政之介'、	
LST47-20	音響放射力による高速可変焦点液体マイクロレンズ	
LST47-21	赤外励起Yb: YAG結晶およびYb: ファイバーの緑色蛍光の考察	
		記明 ³ (千葉大/京都電子工業(株) ¹ 、千葉工大 ² 、千葉大 ³)
LST47-22	招待講演 Sensors based on air-silica microstructured optical fibers	Wei Jin(香港理工大)
LST47-23	招待講演 ファイバセンサを活用した光CTの実用化に向けて	
LST47-24		
	POFイメージファイバによるホログラム伝送と応用	
LST47-26	光ファイバセンサを用いた金属配管の肉厚測定	
LST47-27	光ファイバー増幅器を用いた小型高感度レーザレーダの開発	
2311/2/		E、毛雪松、前田光俊、長嶋千恵、各務学((株)豊田中研)
LST47-28	光ファイバジャイロの動的温度補償による高性能化	
	招待講演 細径ラマンプローブによる生体分析技術の開発	
	空間光変調器による収差補正を用いた水浸対物レンズ下における生体組織深部蛍光	
2511750	瀧口優¹、松本直也¹、高本尚宜¹、金田雅充²、深見正¹、井上卓¹、	
I ST47-31	SSB変調器による光周波数コムを用いたOCTの空間分解能向上	
	分光OCTによる染色毛髪の色素分布分析	
LST47-32		
L3147-33		······ 英作 ² 、秋田尚平 ² 、関篤志 ² 、渡辺一弘 ² (JAXA ¹ 、創価大 ²)
	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	大下、1人四四十、1天為心、1人20 14 0人人人、高川四人 /
笙48回4	光波センシング技術研究会 2011年12月6~7日	
LST48-1	イントロダクトリートーク ― ライフサイエンスの新展開を支える光波センシング技術	======================================
LST48-2	固液界面近傍におけるブラウン粒子の実時間拡散動態計測	
LST48-3	吸収分光による緑藻の単一生細胞イメージング	
LST48-4	虚血様条件下におけるラット脳スライスの光学特性変化	
LST48-5	招待講演 医療における光技術の展開	
LST48-6	招待講演 光音響イメージングの研究動向と皮膚科学分野への応用佐藤俊一1、	
LST48-6 LST48-7	出行論員 元音音イメージングの研究動向と反情科学方式が、の心内在療後一、 2波長型BOTDAを用いた歪分布計測	
LST48-7 LST48-8	Z波長空BOIDAを用いて並が作計例。 ポンプ光のパルス化によるブリルアン散乱信号の増強。	
LST48-9	1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optic	
I CT40 10	based on intensity modulation. Sitthipong!	
LST48-10	Sagnac干渉計による光熱偏向分光法	

LST48-11	招待講演 医療用OCTの現状と将来安野嘉晃(筑波大)
LST48-12	SS-OCTによるラット嗅球を対象としたin vivo断層計測 渡邊秀行 ^{1、4} 、 ウマ マヘスワリ ラジャゴパラン ⁴ 、中道友 ⁴ 、五十嵐啓 ^{2、3、4} 、
	門野博史¹、谷藤学⁴(埼玉大¹、ノルウェーエ科大付属国立研究所²、東大³、理研⁴)
LST48-13	2つの波長を用いた周波数コム間隔掃引干渉法による表面形状計測
	小島崇人¹、粕谷洋介¹、柏木謙¹、崔森悦²、黒川隆志¹(農工大¹、新潟大²)
LST48-14	超高強度レーザ励起高速現象の可視化のためのプラズマ密度計測光干渉計の開発
	花山良平¹、石井勝弘¹、森芳孝¹、桑原一²、川嶋利幸³、北川米喜¹ (光産業創成大¹、(株) IHI²、浜松ホトニクス(株) ³)
LST48-15	国際会議報告 European Conference on Biomedical Optics 報告
LST48-16	招待講演 分光OCTによる化粧皮膚の見え方解析
LST48-17	カラーチャートを用いたデジタル画像の白色推定と色補正
LST48-18	多層構造モデルに基づく皮膚組織内光侵達のモンテカルロシミュレーション
	秋吉騎慎 1 、前田貴章 2 、西舘泉 3 、船水英希 1 、相津佳永 1 (室蘭工大 1 、釧路高專 2 、農工大 3)
LST48-19	MEMSミラーとSingle Photon Avalanche Diodeアレイを用いたイメージャ型レーザレーダ
	伊藤晃太、二クラス クリスチャーノ、青柳勲、松原弘幸、曽我峰樹、前田光俊、加藤覚、各務学 ((株)豊田中研)
LST48-20	招待講演 Optically-modulated MEMS fiber probe for Optical Coherence Tomography
LST48-21	招待講演 拡散光トモグラフィの現状と展開
LST48-22	超音波駆動による液体レンズの3次元焦点走査
LST48-23	動的現象に対応した新しい複屈折計測技術の開発大沼隼志、大谷幸利(宇都宮大)
LST48-24	赤外線励起Yb:YAG結晶からの緑色蛍光の考察
	竹内延夫1、久世宏明1、佐藤庸一2、平等柘範2、中澤叡一郎3(千葉大1、分子研2、工学院大3)
LST48-25	招待講演 光脳機能イメージングの将来展望岡田英史¹、川口拓之²(慶應大¹、放医研²)
LST48-26	シングルショット光学干渉計への可変光共振器の導入と距離計測範囲の拡大
	バン クォック トゥアン、鈴木康平、木村宗弘、塩田達俊(長岡技科大)
LST48-27	多波長同時へテロダイン検波法の高速サンプリングによるデジタル変調光波形計測 山崎俊明、葛綿充、小野浩司、塩田達俊(長岡技科大)
LST48-28	光ファイバ給電による監視カメラ網土田直人、田中洋介、黒川隆志(農工大)
笙49 同÷	光波センシング技術研究会 2012年6月5~6日
Nº 17 E-17	
LST49-1	イントロダクトリートーク - 極限に挑む光波センシングー
	イントロダクトリートーク - 極限に挑む光波センシングー
LST49-1 LST49-2	イントロダクトリートーク - 極限に挑む光波センシングー
LST49-1	イントロダクトリートーク ー極限に挑む光波センシングー
LST49-1 LST49-2 LST49-3	イントロダクトリートーク ー極限に挑む光波センシングー
LST49-1 LST49-2 LST49-3 LST49-4	イントロダクトリートーク ー極限に挑む光波センシングー
LST49-1 LST49-2 LST49-3	イントロダクトリートーク ー極限に挑む光波センシングー
LST49-1 LST49-2 LST49-3 LST49-4	イントロダクトリートーク ー極限に挑む光波センシングー
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5	イントロダクトリートーク ー極限に挑む光波センシングー
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5	イントロダクトリートーク ー極限に挑む光波センシングー
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5	イントロダクトリートーク ー極限に挑む光波センシングー
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-8	イントロダクトリートーク ー極限に挑む光波センシングー 黒川隆志 (農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-8 LST49-9	イントロダクトリートーク - 極限に挑む光波センシングー 黒川隆志 (農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション. 岡田達弘'、西舘泉'、石井勝弘'、岩井俊昭'(農工大'、光産業創成大 ²) Tomographic Phase Microscopy for Multi-layered Samples. Xiaoyan Shen ^{1,2} 、Hidenao Iwai ¹ 、Kentaro Goto ¹ 、Toyohiko Yamauchi ¹ 、Huafeng Liu ² 、Yutaka Yamashita ¹ (浜松ホトニクス ¹ 、浙江大 ²) 招待講演 2 波長レーザー分光法を利用した超解像赤外分光イメージングシステムの開発 酒井誠(東工大) 4分割位相マスクによる非対称ナル干渉計を用いた高ダイナミックレンジ光学系 小林拓自 ¹ 、西川淳 ² 、田中洋介 ¹ 、黒川隆志 ¹ 、柏木謙 ¹ 、田村元秀 ² 、村上尚史 ³ 、馬場直志 ³ 、橋本信幸 ⁴ (農工大 ¹ 、国立天文合 ² 、北大 ³ 、シチズンホールディングス ⁴) 招待講演 凍ったモノサシで時空のゆらぎを測る 大橋正健 (東大) 招待講演 フーリエ縞解析法と極限物理計測への応用 武田光夫(宇都宮大) トモグラフィック分光計測法による物体内構造毎のスペクトル分離計測 坂詰将也、バン クォック トゥアン、塩田達俊(長岡技科大) ヒルベルト位相フィルタを利用した波面方向角の検出 隅本祐樹、高橋毅、小野寺理文(職業大)
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-8 LST49-9 LST49-10	イントロダクトリートーク ー極限に挑む光波センシングー 黒川隆志 (農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-8 LST49-9 LST49-10 LST49-11	イントロダクトリートーク ー極限に挑む光波センシングー 黒川隆志(農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-8 LST49-9 LST49-10 LST49-11	イントロダクトリートーク ー極限に挑む光波センシングー
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-8 LST49-9 LST49-10 LST49-11 LST49-12	イントロダクトリートーク ー極限に挑む光波センシングー 黒川隆志 (農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-8 LST49-10 LST49-11 LST49-12 LST49-12	イントロダクトリートーク - 極限に挑む光波センシングー 黒川隆志 (農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション. 岡田達弘'、西舘泉'、石井勝弘 ² 、岩井俊昭'(農工大'、光産業創成大 ²) Tomographic Phase Microscopy for Multi-layered Samples
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-8 LST49-10 LST49-11 LST49-12 LST49-13 LST49-14	イントロダクトリートーク ー極限に挑む光波センシングー 黒川隆志 (農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション 岡田達弘、西舘泉!、石井勝弘。 岩井俊昭 (農工大)、光産業創成大?) Tomographic Phase Microscopy for Multi-layered Samples. Xiaoyan Shen ¹² 、Hidenao Ivai¹、Kentaro Goto¹、Toyohiko Yamauchi¹、Huafeng Liu²、Yutaka Yamashita¹(浜松ホトニクス¹、浙江大?) 招待講演 2波長レーザー分光法を利用した超解像赤外分光イメージングシステムの開発. 酒井誠(東工大) 4分割竹は日マスクによる非対称ナル干渉計を用いた高ダイナミックレンジ光学系. 小林拓自¹、西川淳、田中洋介¹、黒川隆志¹、柏木謙¹、田村元秀²、村上尚史³、馬場直志³、橋本信幸²(農工大¹、国立天文合²、北犬³、シチズンホールディングス²) 招待講演 凍ったモノサシで時空のゆらぎを測る. 大橋正健(東大) 招待講演 アーリエ綿解析法と極限物理計測への応用. 武田光夫 (宇都宮大) トモグラフィック分光計測法による物体内構造毎のスペクトル分離計測. 坂詰将也、パン クォック トゥアン、塩田達俊(長岡技科大) ヒルベルト位相フィルタを利用した波面方向角の検出. 成田賢司¹、中谷努¹、石井行弘²、小野寺理文(職業大)ハイスピードカメラを利用した半導体レーザー位相シフト干渉計. 成田賢司¹、中谷努¹、石井行弘²、小野寺理文(職業大)、イスピードカメラを利用した半導体レーザー位相シフト干渉計. 成田賢司¹、中谷努¹、石井行弘²、小野寺理文(職業大)、 では触れが、 の挑業大 保持講演 極限精密機械計測への挑戦 ー ビコメートル精度あるいは相対精度10°を目指して. 明田川正人(長岡技科大) Correlation Matching Method for High-Resolution Position Detection of Optical Vortex Using Shack-Hartmann Wavefront Sensor. Chenxi Huang¹、Hongxin Huang²、Haruyoshi Toyota²、Takashi Inoue²、Huafeng Liu¹(浙江大¹、浜松ホトニクス²) 2 波長ディジタルホログラフィ干渉法における位相誤差の補正. 船水英希¹、加藤剛志*、相連住永¹、石井行弘²(室蘭工大¹、理科大²)時空間多重化ホログラフィ法によるマルチスポット光ツィーザ. 吉田光東、岩井俊昭(農工大)
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-10 LST49-10 LST49-11 LST49-12 LST49-13 LST49-14 LST49-15	イントロダクトリートーク 一種眼に挑む光波センシングー 黒川隆志 (農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション 岡田達弘'、西舘泉'、石井勝弘'、岩井俊昭' (農工大'、光産業創成大') Tomographic Phase Microscopy for Multi-layered Samples. Xiaoyan Shen ¹² 、Hidenao Ivai'、Kentaro Goto'、Toyohiko Yamauchi'、Huafeng Liu²、Yutaka Yamashita' (浜松木トニクス'、浙江大') 招待講演 2 波長レーザー分光法を利用した超解像赤外分光イメージングシステムの開発. 酒井誠 (東工大) 4 分割が血相マスクによる非対称ナル干渉計を用いた高ダイナミックレンジ光学系. 小林拓自'、西川淳'、田中洋介'、黒川隆志'、柏木謙'、田村元秀'、村上尚史'、馬場直志'、橋本信幸' (農工大'、国立天文台'、北大'、シチズンホールディングス') 招待講演 凍ったモノサシで時空のゆらぎを測る. 大橋正健 (東大) 招待講演 ブーリエ総解析法と極限物理計測への応用. 武田光夫 (宇都宮大) トモグラフィック分光計測法による物体内構造毎のスペクトル分離計測. 坂詰将也、パン クォック トゥアン、塩田達俊 (長岡技科大) ヒルベルト位相フィルタを利用した返面方向角の検出. 原本枯樹、高橋毅、小野寺理文 (職業大) ハイスピードカメラを利用した半導体レーザー位相シフト干渉計. 成田賢司'、中谷努'、石井行弘'、小野寺理文 (職業大)、 (張大大)、 (発本大)、 (全国技科大) Correlation Matching Method for High-Resolution Position Detection of Optical Vortex Using Shack-Hartmann Wavefront Sensor. Chenxi Huang'、Hongxin Huang'、Haruyoshi Toyoda'、Takashi Inoue'、Huafeng Liu' (浙江大'、浜松ホトニクス') 2 波長ディジタルホログラフィ干渉法における位相誤差の補正. 船水英希'、加藤剛志、相孝佳永'、石井行弘' (室蘭工大'、理科大') 宿時講演 アト秒科開学: アト秒パルスの発生とその計測への応用. 沖野友裁、山内薫 (東大) 招待講演 アト秒科学: アト秒パルスの発生とその計測への応用. 沖野友裁、山内薫 (東大)
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-8 LST49-10 LST49-11 LST49-11 LST49-12 LST49-14 LST49-15 LST49-16	イントロダクトリートーク 一種限に挑む光波センシングー 黒川隆志(農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション 岡田達弘'、西舘泉'、石井勝弘'、岩井俊昭'(農工大'、光産業創成大') Tomographic Phase Microscopy for Multi-layered Samples Xiaoyan Shen¹²、Hidenao Iwai'、Kentaro Goto'、Toyohiko Yamauchi'、Huafeng Liu²、Yutaka Yamashita'(浜松ホトニクス¹、添工大') 招待講演 2 波長レーザー分光法を利用した超解像赤外分光イメージングシステムの開発 酒井誠(東工大) 4 分割位相マスクによる非対称ナル干渉計を用いた高ダイナミックレンジ光学系 小林柘自'、西川淳'、田中洋介'、黒川隆志'、柏木謙'、田村元秀'、村上尚史'、馬場直志'、橋本信幸'(農工大'、国立天文台'、北大'、シチズンホールディングス') 招待講演 凍ったモノサシで時空のゆらぎを測る 大橋正健(東大) お情講演 ブーリエ縞解析法と極限物理計測への応用 武田光夫(宇都宮大) トモグラフィック分光計測法による物体内構造毎のスペクトル分離計測 原本枯樹、高橋毅、小野寺理文(職業大) レルベルト位相フィルタを利用した波面方向角の検出 原本枯樹、高橋毅、小野寺理文(職業大) ハイスピードカメラを利用した半導体レーザー位相シフト干渉計 成田賢司'、中谷努'、石井行弘'、小野寺理文(職業大)、14特講演 極限精密機械計測への挑戦 ー ピコメートル精度あるいは相対精度10°を目指して 明田川正人(長岡技科大) Corelation Matching Method for High-Resolution Position Detection of Optical Vortex Using Shack-Hartmann Wavefront Sensor 明田川正人(長岡技科大) Corelation Matching Method for High-Resolution Position Detection of Optical Vortex Using Shack-Hartmann Wavefront Sensor 「日本子行弘'(第正大)、東科大学) ウラストボージ クラフィ干渉法における位相誤差の補正 船水英希'、加藤剛志'、相連住永'、石井行弘'(室蘭工大)、理科大学) 吉田洸平、岩井俊昭(農工大) お付着講演 アト砂科学:アト砂バルスの発生とその計測への応用 井上雅晶、ファン シンユウ、古教合優介、伊藤文彦 (州T) お付着計画 ・伊藤文子 </td
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-10 LST49-10 LST49-11 LST49-12 LST49-13 LST49-14 LST49-15	イントロダクトリートーク - 極限に挑む光波センシングー
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-10 LST49-10 LST49-11 LST49-12 LST49-13 LST49-14 LST49-15 LST49-16 LST49-17	イントロダクトリートーク - 極限に挑む光波センシングー 黒川隆志 (農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション 岡田連弘 ¹ 、西舘泉 ¹ 、石井勝弘 ² 、岩井俊昭 (農工大、光産業創成大 ²) Tomographic Phase Microscopy for Multi-layered Samples Xiaoyan Shen ¹² 、Hidenao Iwai ² 、Kentaro Goto ¹ 、Toyohiko Yamauchi ³ 、Huafeng Liu ² 、Yutaka Yamashita ³ (浜松木トニクス ¹ 、添工犬 ² 招待講演 2波長レーザー分光法を利用した超解像赤外分光イメージングシステムの開発 小林柘自 ³ 、西川草 ² 、田中洋介 ³ 、黒川隆志 ³ 、柏木謙 ³ 、田村元秀 ³ 、村上尚史 ³ 、馬場直志 ³ 、橋本信幸 (農工犬、国立天文台 ³ 、北犬、シチズンホールディングス ⁵ 招待講演 凍ったモノサシで時空のゆらぎを測る 大橋正健 東大 招待講演 ブーリエ総解析法と極限物理計測への応用 トモグラフィック分光計測法による物体内構造毎のスペクトル分離計測
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-10 LST49-10 LST49-11 LST49-12 LST49-13 LST49-14 LST49-15 LST49-16 LST49-17	イントロダクトリートーク - 極限上挑む光波センシングー 黒川隆志 (農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション 岡田達弘'、西舘泉'、石井勝弘'、岩井俊昭'(農工大、光産業創成大) Tomographic Phase Microscopy for Multi-layered Samples Xiaoyan Shen'²、Hidenao Iwai'、Kentaro Goto'、Toyohiko Yamauchi¹、Huafeng Liu²、Yutaka Yamashita¹(浜松ホトニクス¹、添工犬) 招待講演 2波長レーザー分光法を利用した超解像赤外分光イメージングシステムの開発
LST49-1 LST49-2 LST49-3 LST49-4 LST49-5 LST49-6 LST49-7 LST49-9 LST49-10 LST49-11 LST49-12 LST49-14 LST49-15 LST49-16 LST49-17 LST49-18	イントロダクトリートーク - 極限に挑む光波センシングー 黒川隆志 (農工大) 光断層計測における多重散乱光の影響に関する光伝播モンテカルロシミュレーション 岡田連弘 ¹ 、西舘泉 ¹ 、石井勝弘 ² 、岩井俊昭 (農工大、光産業創成大 ²) Tomographic Phase Microscopy for Multi-layered Samples Xiaoyan Shen ¹² 、Hidenao Iwai ² 、Kentaro Goto ¹ 、Toyohiko Yamauchi ³ 、Huafeng Liu ² 、Yutaka Yamashita ³ (浜松木トニクス ¹ 、添工犬 ² 招待講演 2波長レーザー分光法を利用した超解像赤外分光イメージングシステムの開発 小林柘自 ³ 、西川草 ² 、田中洋介 ³ 、黒川隆志 ³ 、柏木謙 ³ 、田村元秀 ³ 、村上尚史 ³ 、馬場直志 ³ 、橋本信幸 (農工犬、国立天文台 ³ 、北犬、シチズンホールディングス ⁵ 招待講演 凍ったモノサシで時空のゆらぎを測る 大橋正健 東大 招待講演 ブーリエ総解析法と極限物理計測への応用 トモグラフィック分光計測法による物体内構造毎のスペクトル分離計測

LST49-20	光周波数コムを用いたブリルアンファイバセンサの長距離化
LST49-21	
LST49-22	招待講演 時間分解干渉顕微鏡によるフェムト秒レーザー誘起現象の観測
LST49-23	液接定面mumpymで用いる下沙法とアンダルトログラフィ
LST49-24	可変元共振器と至内12相変調器によるシングルショット十渉形仏計測のレンジ版人
LST49-25	DBRファイバレーザを用いた高精度多点化能動型光ファイバ歪センサ 松本豪「、関柏鴎」、劉慶文「、保立和夫」、何祖源「(東大」、中国暨南大 ²)
LST49-25	DBRファイハレーリを用いて高利良多点に能動空元ファイハ主ゼンリ 松本家、奥柏崎、劉慶文、朱立和大、阿柏原(東大、中国宣刊人) 音速測定によるPMMAポリマー光ファイバ中のブリルアン散乱特性の推定
LST49-20 LST49-27	日本別とによる「MIMIAバリャールファイハ中のファルアン財配は特任の存在と、
LST49-27	古村神殿 元司派数コムの発展とその応用計測 伝本弘一(東入) 広帯域なホログラフィック光周波数コムシンセサイザ/アナライザの検討 二 山崎俊明 塩田達俊(長岡技科大)
LST49-29	チャーブ型FBGを反射鏡として用いたファブリ・ペロー干渉計型光ファイバセンサの試作 : 振動計測への応用 井熊佳祐'、和田篤'、田中哲'、大道浩児 ² 、高橋信明'(防衛大'、フジクラ ²)
LST49-30	
L3149-30	■祝道・■丞通信祠・二市に「の起番道」80元行与/復与益・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	ま門陸の印、八色石ル、14年中央、月小日、中山田山、3次5号、田内以上、市山山山と、北田山 (フラフラ、WAA、MOI)
第50回光	光波センシング技術研究会 2012年12月4~5日
LST50-1	イントロダクトリートーク 一光波センシング技術、温故知新一
LST50-2	フェムト秒レーザー穴あけ加工を用いた気体検知機能を有する光ファイバセンサの開発~センサ原理の調査~
	濵先誠行、合谷賢治、渡辺一弘(創価大)
LST50-3	フェムト秒レーザー微細加工を応用した石英ファイバへの屈曲方向検知機能の付加
LST50-4	半波長を越える動作範囲を有するホモダイン干渉原理に基づいた光センサの開発高原穆之、清水惇、今濱睦、塚田和正(白山工業)
LST50-5	Au/Ta2O5/Pdの多層膜構造を利用したヘテロコア光ファイバSPR水素センサの開発
	細木藍「、西山道子2、井川寛隆2、関篤志」、崔龍雲「、渡辺一弘」(創価大「、JAXA2)
LST50-6	ロングゲージFBGと時間差透過/反射比光計測方式DTR3によるひずみ計測性能の評価
	西山道子 ¹ 、井川寛隆 ¹ 、葛西時雄 ¹ 、渡辺直行 ² (JAXA ¹ 、首都大東京 ²)
LST50-7	招待講演 ファイバグレーティングを使った音響センシング高橋信明、井熊佳祐、手倉森新伍、竹内誠、和田篤、田中哲(防衛大)
LST50-8	招待講演 浜松における空間光変調器研究の昨日・今日・明日
LST50-9	空間位相変調器を用いた零位法干渉計の開発花山良平、石井勝弘 (光産業創成大)
LST50-10	空間光周波数変調型多波長走査光源を用いた干渉計測崔森悦、加藤平一、佐々木修己、鈴木孝昌(新潟大)
LST50-11	バイナリナノ構造の複素振幅型光再生
LST50-12	位相子と検光子の二重回転によるイメージングストークス偏光計と漆の質感評価への応用
	水谷亮太、石川智治、阿山みよし、大谷幸利(宇都宮大)
LST50-13	簡素化PIC-FDTD シミュレーションによる高効率スミス・パーセルテラヘルツ超放射方式の探索
	松井龍之介、岡島亜希子、畑浩一(三重大)
LST50-14	招待講演 構造化照明を利用した超解像顕微鏡
LST50-15	ドップラー位相シフトディジタルホログラフィを用いた多波長計測とイメージング
	喜入朋宏、茨田大輔、Quang Duc Pham、杉坂純一郎、早崎芳夫、谷田貝豊彦(宇都宮大)
LST50-16	音響放射力と粘弾性材料を用いた可変焦点レンズとそのアレイ化 小山大介'、畠中恵'、中村健太郎'、松川真美'(同志社大'、東工大')
LST50-17	ポンプ・プローブ法を用いたシリカ系多モード光ファイバ中の誘導ブリルアン散乱の観測林寧生、水野洋輔、中村健太郎(東工大)
LST50-18	ラマン散乱光を用いた光ファイバ温度分布センサにおける新たな温度校正方法の開発
	福澤亨、志田秀夫、大石和司、阿川久夫、足立正二(横河電機)
LST50-19	招待講演 ブリルアン散乱を応用した分布型光ファイバーセンシング
LST50-20	Heterodyne Interference System for Absolute Length Measurement Using Optical Frequency Comb.
	Xiaonan Wang、Satoru Takahashi、Kiyoshi Takamasu、Hirokazu Matsumoto(東大)
LST50-21	2台の位相変調器を用いたループ型広帯域光周波数コム発生器青木誠、谷垣俊秀、辻健一郎、小野寺紀明(防衛大)
LST50-22	高速ニオブ酸リチウム光変調器の光センシング応用日隈薫、市川潤一郎、牟禮勝仁、及川哲、原徳隆(住友大阪セメント)
LST50-23	大気CO2計測用周波数チャープ強度変調方式レーザ吸収分光装置の開発
	今城勝治'、亀山俊平'、上野信一'、平野嘉仁'、境澤大亮'、川上修司'、中島正勝'(三菱電機'、JAXA')
LST50-24	位相変調光を用いた時間領域任意振動波形の精密測定宮田直之、田中洋介、黒川隆志(農工大)
LST50-25	招待講演 超高速光周波数コムシンセサイザ・アナライザによるフェムト秒光波形制御
LST50-26	招待講演 血管診断用OCT

版語将也、トゥアン バン クォック、記話将也、トゥアン バン クォック、記話将也、トゥアン バン クォック、記話将也、トゥアン バン クォック、記話将也、トゥアン バン クォック、記話がいる。 古田慧一郎、西舘泉、川内聡子、佐藤俊一、佐藤学(農工大・日本 日本 日	、防衛医犬、山形犬 三蘭工犬、東京都市犬。 小関泰之(阪大 小林喬郎(福井大 小林喬郎(福井大 、黒川隆志。村上浩 4、二一ス犬、農工犬 宏、笹山裕之(島根大
吉田慧一郎'、西舘泉'、川内聡子'、佐藤俊一'、佐藤学'(農工大' LST50-29 近赤外バイオスペックル血液濃度イメージングにおける時間分解能の改善 横井直倫'、松宮路恵'、佐藤潤季'、島谷祐一'、京相雅樹'、船水英希'、相津佳永'(旭川高専'、室 LST50-30 招待講演 誘導ラマン散乱を用いた無染色生体顕微鏡 LST50-31 招待講演 地球環境計測用レーザレーダの研究開発50年 LST50-32 系外惑星直接観測のための焦点面波面センシングを用いた2波面センサー法 大矢正人 ^{1,2} 、西川淳'、堀江正明 ^{1,2} 、村上尚史'、小谷隆行'、Lyu Abe ⁵ 、熊谷紫麻見'、田村元秀'、(日大'、国立天文台'、北大'、JAXA' LST50-33 多波長光を用いた水面センシング方式の検討増田浩次、田山恵一、北村心、徳永星哉、兼正優、長岡大樹、信川友 LST50-34 リニアアレイ受信型3Dレーザセンサの開発 小竹論季、平井暁人、亀山俊平、今城勝治、辻秀伸、高林幹夫、笹畑圭史. LST50-35 PM2.5計測を目指した環境微粒子カウンタの提案	、防衛医犬、山形犬 三蘭工犬 ² 、東京都市犬 ³ 小関泰之(阪大 小林喬郎(福井大 小林喬郎、村上浩 ⁴ 、二一ス犬 ⁵ 、農工犬 ⁶ 宏、笹山裕之(島根大
横井直倫'、松宮路恵'、佐藤潤季'、島谷祐一'、京相雅樹'、船水英希'、相津佳永'(旭川高専'、室LST50-30 招待講演 誘導ラマン散乱を用いた無染色生体顕微鏡 LST50-31 招待講演 地球環境計測用レーザレーダの研究開発50年 LST50-32 系外惑星直接観測のための焦点面波面センシングを用いた2波面センサー法 大矢正人 ^{1,2} 、西川淳'、堀江正明 ^{1,2} 、村上尚史'、小谷隆行'、Lyu Abe ⁵ 、熊谷紫麻見'、田村元秀'、(日大'、国立天文台'、北大'、JAXA' LST50-33 多波長光を用いた水面センシング方式の検討増田浩次、田山恵一、北村心、徳永星哉、兼正優、長岡大樹、信川友LST50-34 リニアアレイ受信型3Dレーザセンサの開発 小竹論季、平井暁人、亀山俊平、今城勝治、辻秀伸、高林幹夫、笹畑圭史、LST50-35 PM2.5計測を目指した環境微粒子カウンタの提案	至蘭工大 ² 、東京都市大 ³ 小関泰之(阪大 小林喬郎(福井大 小林喬郎、村上浩 ⁴ 、ニース大 ⁵ 、農工大 ⁶ 、宏、笹山裕之(島根大
LST50-30 招待講演 誘導ラマン散乱を用いた無染色生体顕微鏡	小関泰之(阪大 小林喬郎(福井大 、黒川隆志 ⁶ 、村上浩 ⁴ 、ニース大 ⁶ 、農工大 ⁶ 宏、笹山裕之(島根大
LST50-31 招待講演 地球環境計測用レーザレーダの研究開発50年	小林喬郎(福井大 、黒川隆志 [*] 、村上浩 [*] ⁴ 、ニース大 [*] 、農工大 [*] 宏、笹山裕之(島根大
LST50-32 系外惑星直接観測のための焦点面波面センシングを用いた2波面センサー法	、黒川隆志。村上浩 ⁴ 、ニース大。農工犬 な、笹山裕之(島根大
大矢正人 ^{1,2} 、西川淳 ² 、堀江正明 ^{1,2} 、村上尚史 ³ 、小谷隆行 ⁴ 、Lyu Abe ⁵ 、熊谷紫麻見 ¹ 、田村元秀 ² 、(日大 ¹ 、国立天文台 ² 、北大 ³ 、JAXA ⁴ LST50-33 多波長光を用いた水面センシング方式の検討増田浩次、田山恵一、北村心、徳永星哉、兼正優、長岡大樹、信川友 LST50-34 リニアアレイ受信型3Dレーザセンサの開発	、黒川隆志。村上浩 ⁴ 4、ニース大。農工大 ⁶ 宏、笹山裕之(島根大
(日大 ¹ 、国立天文台 ² 、北大 ³ 、JAXA ⁴ LST50-33 多波長光を用いた水面センシング方式の検討増田浩次、田山恵一、北村心、徳永星哉、兼正優、長岡大樹、信川友 LST50-34 リニアアレイ受信型3Dレーザセンサの開発	4、ニース大 ⁵ 、農工大 ⁶ 宏、笹山裕之(島根大
LST50-33 多波長光を用いた水面センシング方式の検討増田浩次、田山恵一、北村心、徳永星哉、兼正優、長岡大樹、信川友 LST50-34 リニアアレイ受信型3Dレーザセンサの開発	宏、笹山裕之(島根大
LST50-34 リニアアレイ受信型3Dレーザセンサの開発	
小竹論季、平井暁人、亀山俊平、今城勝治、辻秀伸、高林幹夫、笹畑圭史. LST50-35 PM2.5計測を目指した環境微粒子カウンタの提案	
LST50-35 PM2.5計測を目指した環境微粒子カウンタの提案 鶴見健太 LST50-36 光断層計測のモンテカルロシミュレーションにおける空間分解能の検討	平野喜仁 (=菱雷櫟
LST50-36 光断層計測のモンテカルロシミュレーションにおける空間分解能の検討	
LST50-37 偏光制御型共焦点光学系システムにおける戻り光によるVCSELの偏光特性評価	
20100 01 MIND 01/11-12 ANGUNO 1 MAY AND 01/10-00 01 CONTROL MIND 01/11-12 MIND 01/11-1	
第51回光波センシング技術研究会 2013年6月4~5日	
LST51-1 イントロダクトリートーク 一光波センシングのための偏光技術の進展	大谷 幸 利(宇都宮大
LST51-2 超音波によるプラスチック光ファイバの突き合わせ接続	,中村健太郎(東工大
LST51-3 プラスチック光ファイバ中の誘導ブリルアン散乱の特性評価	前、中村健太郎 (東工大
LST51-4 カスケード型長周期光ファイバグレーティングの作製と振動計測への応用	
LST51-5 偏光スクランブルパルス列を用いた広域ファイバセンシングにおける偏光不安定性の抑圧	
小林弘和'、路蜜芳'、徐勲健²、野中弘二'(高知工科大学'、State Gr	rid Corporation of China ²
LST51-6 招待講演 偏波保持ファイバとその応用	弐、山内良三 (フジクラ
LST51-7 チュートリアル 偏光解析法 の 基礎と応用	川畑州一(東京工芸大
LST51-8 Rb吸着Si表面における第2高調波光の偏光特性齊藤文一、小甲顕	迚、鈴木隆則(防衛大
LST51-9 液晶マイクロシリンダーからのフォトニック・ナノジェットの偏光状態解析松井龍之介、横井宗次郎.	、岡島亜希子(三重大
LST51-10 フルストークスカメラを用いた複屈折マッピング	、大谷幸利(宇都宮大
LST51-11 PLZTの全偏光特性を考慮した複屈折性メモリデバイスの開発	l [『] (徳島大 ¹ 、宇都宮大 ²
LST51-12 招待講演 磁気光学効果を用いた磁気イメージング	.石橋隆幸(長岡技科大
LST51-13 Compensation of the cross-correlation signal noise for a spatially resolved tomographic spectroscopy	
Tuan Banh Quoc ¹ , Masaya Sakatsume ¹ , Tatsutoshi Shioda ²	
LST51-14 圧縮センシングを用いた光周波数コム形状計測ファム ドゥク クアン、	
LST51-15 国際会議報告 OFS-22報告	
LST51-16 招待講演 インライン偏光ホログラフィを用いたページデータの記録	
LST51-17 Analysis on the Employment of Combined Codes in Modulating the Pump Light of Phase Shift Pulse Brillouin Optical Time Domain	•
(PSP-BOTDA)	•
LST51-18 遠端反射のパルス光ブリルアン利得解析による分岐モニタリング技術高橋央、戸毛邦弘、伊藤	
LST51-19 音速測定による部分塩素化ポリマー光ファイバ中のブリルアン周波数シフト及びその温度依存性の推定	
皆川和成、林寧生、水野洋輔	
LST51-20 シミュレーションによるブリルアン光相関領域法におけるテンポラルゲート技術の最適化	
LST51-21 招待講 演 新規液晶レンズとその応用	
LST51-22 招待講 演 干渉屋から見た偏光計測	
LST51-23 インコヒーレントへテロダイン干渉計測	
LST51-24 近赤外バイオスペックルによる血流・血液濃度変化イメージングにおける画像処理法の改善	
LST51-25 偏光分光特性を用いた植物葉の水分変化検出の試み	
LST51-27 招待講演 液晶素子による位相・偏光制御とその応用	ブンナー リニ・・ ゲー

LST51-30		
	_	偉 ^{1,2} 、廣畑徹、中嶋和利、王曉萍(浜松ホトニクス ¹ 、浙江大 ²)
	光波センシング技術研究会 2013年12月3~4日	
LST52-1	イントロダクトリートーク 一分光を利用した光波センシングー	
LST52-2	可視域3色LEDを用いたFF-OCTによる化粧肌の特性評価	木村亮太、岩井俊昭(農工大)
LST52-3	ハイパースペクトルイメージングと光伝搬モンテカルロ法を用いた皮膚分光原	豆射率の空間分布解析
	船水英 ^{希1} 、前E	田貴章2、桑原智裕3、相津佳永1(室蘭工大1、釧路高専2、資生堂3)
LST52-4	多波長逆伝搬法を用いたスペクトラル干渉計による薄膜形状及び振動計測	崔森悦、武隈雄也、佐々木修己、鈴木孝昌(新潟大)
LST52-5	招待講演 拡散反射分光法を利用した生体機能計測とイメージング	
	西舘泉 ¹ 、川内聡子 ² 、佐藤俊一 ² 、	佐藤学 ³ 、相津佳永 ⁴ (農工大 ¹ 、防衛医大 ² 、山形大 ³ 、室蘭工大 ⁴)
LST52-6	招待講演 超精密分光測定による太陽系外地球型惑星探査	
	小谷隆行 ¹ 、田村元秀 ^{1,2}	、西川淳「、黒川隆志「、3、柏木謙「(国立天文台」、東大2、農工大3)
LST52-7	系外惑星直接撮像のための高コントラスト光学系の研究: 初段補償光学による	5干渉計内部の波面補正
	堀江正明 ^{1,2} 、大矢正人 ^{1,2} 、福	西川淳 ^{2,3} 、田村元秀 ^{2,4} 、藤井紫麻見「、村上尚史 ^{5,6} 、黒川隆志 ^{2,7}
	(日	大 ¹ 、国立天文台 ² 、総研大 ³ 、東大 ⁴ 、北大 ⁵ 、JPL/NASA ⁶ 、農工大 ⁷)
LST52-8	2D singleshot tomography: effectiveness of the diffraction orders of SPM to the measure	ement range.
		Tuan Banh Quoc ¹ 、Tatsutoshi Shioda ² (長岡技科大 ¹ 、埼玉大 ²)
LST52-9	表面波励振と光計測を組み合わせた生体組織の微小領域硬さ測定	加藤友佳子、水野洋輔、田原麻梨江、中村健太郎(東工大)
LST52-11	招待講演 光周波数コムを用いた中赤外分子分光	
LST52-21		中村崇市郎'、佐藤悠貴 ¹ 、石井勝弘 ² (富士フイルム ¹ 、光創成大 ²)
I CTF2 22	二重位相子回転型分光ミュラ―行列顕微鏡	
	――単位作丁回転空ガルミュラー・19川戦隊親・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	招待講演 波長多重通信用光機能回路津田裕之「、浅倉秀明」、梨本恵	
LS152-25	ポリマー光フアイバ中のブリルアン散乱特性の広域温度依存性	
Y 077750 0 6		原百合、田原正樹、細田秀樹、水野洋輔、中村健太郎(東工大)
LS152-26	半導体レーザの電流変調を用いたFBGファブリ・ペロー干渉計型光ファイバ	
		和田篤、田中哲、髙橋信明(防衛大)
LST52-27	チャープFBGを用いたファブリ・ペロー干渉計型光ファイバセンサのパルス位	
	手倉森新伍、竹内	n誠、内村良太郎、月田統、和田篤、田中哲、高橋信明(防衛大)
	光波センシング技術研究会 2014年6月18~19日	
	イントロダクトリートーク 一光パルス技術と光波センシングー	
LST53-2	加熱したヘテロコア型光ファイバSPR水素センサのcuring処理による応答時間	
	細木藍	「、西山道子」、井川寛隆、関篤志」、渡辺一弘「創価大」、JAXA2)
LST53-3	カスケード型長周期光ファイバーグレーティングを用いたひずみセンサの検討	村一 チャネルスペクトルのフーリエ解析
	によるひずみ測定 一月田統、ゴ	
LST53-4	テーパー加工したポリマー光ファイバ中のブリルアン散乱の観測	
LST53-5	エルビウム添加光ファイバ中のブリルアン散乱と蛍光を併用した歪・温度同	寺分離計測丁明杰、水野洋輔、中村健太郎(東工大)
	470年書名 エードロサンコーノジレーザのようこうださせ	山下古司(古十)
LST53-6	招待講演 モード同期光ファイバレーザのセンシング応用	

I CT52 0		
LST53-8	LCOS-SLMを用いた超短光パルス整形器の試作と検証	
LST53-9	光周波数コムのパルス干渉による絶対距離計測技術	
LST53-10	8 8 1	
I CT52 11	wird Sudaina 招待講演 合成パルスによるマルチギガヘルツコムの計測応用	um ¹ 、Matsumoto Hirokazu ^{1,2} 、Kiyoshi Takamasu ¹ (東大 ¹ 、東京精密)
LS153-11		。 《悦》、塩田達俊》、田中洋介「、黒川隆志「(農工大」、新潟大 ² 、埼玉大 ³)
I CT52 12		
	分散チューニングファイバレーザのフーリエドメインOCT応用レーザ変位計を用いた葉の振動計測による植物の水ストレス評価	
LST53-13		
LST53-14		
LST53-15	遠隔環境計測のための中赤外電子波長可変コヒーレント光源	為本止倒、漏療個人、和田省之(理明)
LST53-16	国際会議報告 OFS-23報告 偏光カメラを用いた分光ストークス・イメージング	此四季亚 十公去利(宁初宁十)
LST53-18	光相関領域法によるブリルアンダイナミックグレーティングスペクトルの	
I CT52 10	ポンブ・リード光路差の影響ポンプ・リード光路差の影響ポリマー光ファイバ中のブリルアン散乱を用いた分布型歪・温度センシン	
LST53-19		
LST53-20	招待講演 光パルス試験器(OTDR)の歴史, 現状と課題	
LST53-21		
LST53-22		ル開先 晶弘²、御崎哲一³、瀧浪秀元³(レーザー総研¹、鉄道総研²、JR西日本³)
I CT52 22		
LS153-23	空中放射音波とレーザードップラ振動計を用いた遠距離非接触音響探査法	
I CT52 24		杉本恒美、上地樹、歌川紀之、片倉景義(桐蔭横浜大)
LST53-24	光コムによる粗面物体への非接触精密計測に関する研究	
LS133-23		
I ST52 26		本、次の入開、谷の見壹多、千呵万天 (子印音人、イヤノン) 材料の弾性定数計測および超高感度バイオセンサーへの応用
L3133-20	1015時後 12位元で元の75世間の以力十六派へ、フトロスコピー・アフ	17740万年11年20日 別のより但同意及バイカビンリー 40万円
		おけまった (RF+)
I ST52 27	辺体準定 ギャップレフTE2コナ公平は	荻博次(阪大) 安共武中(徳島木)
LST53-27	招待講演 ギャップレスTHzコム分光法	安井武史(徳島大)
LST53-28	稿コントラスト最大条件を満たす位相検出アルゴリズムの開発	金亮鎮'、日比野謙一 ² 、杉田直彦 ¹ 、光石衛 ¹ (東大 ¹ 、産総研 ²)
LST53-28 LST53-29	編コントラスト最大条件を満たす位相検出アルゴリズムの開発位相計測ディフレクトメトリと干渉計測による高信頼性精密形状計測の記	安井武史(徳島大) 金亮鎮「、日比野謙一 ² 、杉田直彦 ¹ 、光石衛 ¹ (東大 ¹ 、産総研) 成み花山良平(光産業創成大)
LST53-28	稿コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史(徳島大) 金亮鎮「、日比野謙一 ² 、杉田直彦 ¹ 、光石衛 ¹ (東大 ¹ 、産総研) 成み花山良平(光産業創成大)
LST53-28 LST53-29 LST53-30	編コントラスト最大条件を満たす位相検出アルゴリズムの開発位相計測ディフレクトメトリと干渉計測による高信頼性精密形状計測の記 超微細構造を有する多値位相ホログラムの評価田村仁志	安井武史(徳島大) 金亮鎮「、日比野謙一 ² 、杉田直彦 ¹ 、光石衛 ¹ (東大 ¹ 、産総研) 成み花山良平(光産業創成大)
LST53-28 LST53-29 LST53-30	編コントラスト最大条件を満たす位相検出アルゴリズムの開発 位相計測ディフレクトメトリと干渉計測による高信頼性精密形状計測の記 超微細構造を有する多値位相ホログラムの評価田村仁志	安井武史(徳島大) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
LST53-28 LST53-29 LST53-30 第54回) LST54-1	編コントラスト最大条件を満たす位相検出アルゴリズムの開発 位相計測ディフレクトメトリと干渉計測による高信頼性精密形状計測の記 超微細構造を有する多値位相ホログラムの評価田村仁志 光波センシング技術研究会 2014年12月9~10日 イントロダクトリートーク 一光波センシングを支えるイメージセンサーの進展	安井武史(徳島大) 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
LST53-28 LST53-29 LST53-30 第54回 LST54-1 LST54-2	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史 (徳島大) 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
LST53-28 LST53-29 LST53-30 第54回) LST54-1 LST54-2 LST54-3	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	一 安井武史(徳島大) 安井武史(徳島大) 安井武史(徳島大) 大石衛」(東大」、産総研) 成み 花山良平(光産業創成大) 「、高橋毅」、花山英治」、小野寺理文「、石井行弘」(職業大「、理科大) 「大田本学」、石井行弘」(職業大「、理科大学) 「大田本学」、「中崎芳夫(宇都宮大) 「大田本学」、「東崎芳夫(宇都宮大) 「大田本学」、「東崎芳夫(宇都宮大) 「大田本学」、「東崎芳夫(宇都宮大) 「大田本学」、「東崎芳夫(宇都宮大) 「大田本学」、「東崎芳夫(宇都宮大) 「大田本学」、「東京、東京、大田本学」、「大田本学」、「大田本学」、「大田本学」、「大田本学」、「大田本学」、「大田本学」、「大田本学」、「大田本学学、「大田本学学」、「大田本学学、「大田本学、「田本学、「田本学、「田本学、「大田本学、「田本学、「田本学、「田本学、「田本学、「田本学、「田本学、「田本学、「
LST53-28 LST53-29 LST53-30 第54回) LST54-1 LST54-2 LST54-3 LST54-4	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史 (徳島大)
LST53-28 LST53-29 LST53-30 第54回) LST54-1 LST54-2 LST54-3 LST54-4 LST54-5	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史 (徳島大)金亮鎮'、日比野謙一 ² 、杉田直彦 ¹ 、光石衛 ¹ (東大 ¹ 、産総研 ²) 成み 花山良平 (光産業創成大) ¹ 、高橋毅 ¹ 、花山英治 ¹ 、小野寺理文 ¹ 、石井行弘 ² (職業大 ¹ 、理科大 ²) - 早崎芳夫(宇都宮大) 横井直倫 ¹ 、相津佳永 ² (旭川高専 ¹ 、室蘭工大 ²)
LST53-28 LST53-29 LST53-30 第54回う LST54-1 LST54-2 LST54-3 LST54-4 LST54-5 LST54-6	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史(徳島大)
LST53-28 LST53-29 LST53-30 第54回) LST54-1 LST54-2 LST54-3 LST54-4 LST54-5 LST54-6 LST54-7	編コントラスト最大条件を満たす位相検出アルゴリズムの開発位相計測ディフレクトメトリと干渉計測による高信頼性精密形状計測の記起微細構造を有する多値位相ホログラムの評価	安井武史(徳島大)
LST53-28 LST53-29 LST53-30 第54回う LST54-1 LST54-2 LST54-3 LST54-4 LST54-5 LST54-6	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史(徳島大)
LST53-28 LST53-29 LST53-30 第54回) LST54-1 LST54-2 LST54-3 LST54-4 LST54-5 LST54-6 LST54-7 LST54-8	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史 (徳島大)
LST53-28 LST53-29 LST53-30 第54回) LST54-1 LST54-2 LST54-3 LST54-4 LST54-5 LST54-6 LST54-7	編コントラスト最大条件を満たす位相検出アルゴリズムの開発 位相計測ディフレクトメトリと干渉計測による高信頼性精密形状計測の記 超微細構造を有する多値位相ホログラムの評価	安井武史 (徳島大)
LST53-28 LST53-29 LST53-30 第54回为 LST54-1 LST54-2 LST54-3 LST54-4 LST54-5 LST54-6 LST54-7 LST54-8	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史 (徳島大)金亮鎮'、日比野謙一²、杉田直彦'、光石衛'(東大'、産総研') 成み花山良平(光産業創成大) 「、高橋毅'、花山英治'、小野寺理文'、石井行弘²(職業大'、理科大²) 「「東村大党」では、「東本大学」では、「東本大学」では、「東本大学」では、「東北大学」では、「東北大」が、「東北大」が、「東北大」が、「東北大」が、「東北大」が、「東大学、「東大学」を表達大学、「東本学」(日本大」、「東大学、東大学、東大学、東大学、東大学、東大学、東大学、東大学、東大学、東大学、
LST53-28 LST53-29 LST53-30 第54回う LST54-1 LST54-2 LST54-3 LST54-4 LST54-5 LST54-6 LST54-7 LST54-8 LST54-9	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史 (徳島大)
LST53-28 LST53-29 LST53-30 第54回 LST54-1 LST54-2 LST54-3 LST54-4 LST54-5 LST54-6 LST54-7 LST54-8 LST54-9 LST54-10 LST54-10	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史(徳島大)
LST53-28 LST53-29 LST53-30 第54回 LST54-1 LST54-2 LST54-3 LST54-4 LST54-5 LST54-6 LST54-7 LST54-8 LST54-9 LST54-10 LST54-10	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史 (徳島大)金亮鎮'、日比野謙一²、杉田直彦'、光石衛'(東大'、産総研') 成み花山良平 (光産業創成大) 「、高橋毅'、花山英治'、小野寺理文'、石井行弘 ² (職業大'、理科大 ²) 展ー早崎芳夫 (宇都宮大) 「早崎芳夫 (宇都宮大) 「神子世紀 (農工大) 「神子世紀 (農工大) 「神子世紀 (農工大) 「神子神宮 (長工大) 「神子神宮 (日立アロカメディカル) 「古田晃 (日立アロカメディカル) 「古田晃 (日立アロカメディカル) 「古田晃 (日立アロカメディカル) 「古田晃 (日立アロカメディカル) 「古田晃 (日立アロカメディカル) 「本村雄治、岩井俊昭 (農工大) が、 「おり、 「大きなでは、 「大きないずみの同時測定における測定分解能
LST53-28 LST53-29 LST53-30 第54回 LST54-1 LST54-2 LST54-3 LST54-5 LST54-6 LST54-6 LST54-7 LST54-8 LST54-9 LST54-10 LST54-11 LST54-12	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史 (徳島大)
LST53-28 LST53-29 LST53-30 第54回 LST54-1 LST54-2 LST54-3 LST54-5 LST54-6 LST54-6 LST54-7 LST54-8 LST54-9 LST54-10 LST54-11 LST54-12	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史(徳島大)
LST53-28 LST53-29 LST53-30 第54回 LST54-1 LST54-1 LST54-2 LST54-3 LST54-4 LST54-5 LST54-6 LST54-7 LST54-9 LST54-10 LST54-11 LST54-12 LST54-13	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史 (徳島大)金亮鎮'、日比野謙一²、杉田直彦'、光石衛'(東大'、産総研') 成み花山良平 (光産業創成大) 「、高橋毅'、花山英治'、小野寺理文'、石井行弘'(職業大'、理科大') 「長一早崎芳夫 (宇都宮大) 「早崎芳夫 (宇都宮大) 「河合優、岩井俊昭 (農工大) 「河合優、岩井俊昭 (農工大) 「河合優、岩井俊昭 (農工大) 「河合優、岩井俊昭 (農工大) 「河合優、岩井俊昭 (農工大) 「カリー・「カリー・「カリー・「カリー・「カリー・「カリー・「カリー・「カリー・
LST53-28 LST53-29 LST53-30 第54回 LST54-1 LST54-2 LST54-3 LST54-5 LST54-6 LST54-6 LST54-7 LST54-8 LST54-9 LST54-10 LST54-11 LST54-12 LST54-13	編コントラスト最大条件を満たす位相検出アルゴリズムの開発	安井武史 (徳島大)金亮鎮'、日比野謙一'、杉田直彦'、光石衛'(東大'、産総研') 成み花山良平 (光産業創成大) 「、高橋毅'、花山英治'、小野寺理文'、石井行弘'(職業大'、理科大') 「長一早崎芳夫 (宇都宮大) 「一、早崎芳夫 (宇都宮大) 「一、一早崎芳夫 (宇都宮大) 「一、一月の一月の一月の一月の一月の一月の一月の一月の一月の一月の一月の一月の一月の一

LST54-16	Study on higher-order optical vortex detection method using Shack-Hartmann wavefront sensor — Phase-Slope-Combining
	Correlation Matching Mothed.
	Jia Luo¹、Hongxin Huang²、Yoshinori Matsui²、Haruyoshi Toyoda²、Takashi Inoue²、Jian Bai¹(浙江大¹、浜松ホトニクス²)
LST54-17	High accuracy measurement method for coordinate measuring machine using fast optical comb and ball lens.
	Wiroj Sudatham¹、Hirokazu Matsumoto¹¹²、Satoru Takahashi¹、Kiyoshi Takamasu¹(東大¹、東京精密ク
LST54-18	招待講演 ライトフィールドカメラとそのデータを利用した3Dインテグラルディスプレイ
LST54-19	招待講演 高時間分解ロックインピクセルイメージセンサと応用川人祥二、安富啓太、徐珉雄、香川景一郎(静岡大)
LST54-20	光周波数コム形状計測における2波長法による計測ダイナミックレンジの拡大ファム ドゥク クアン、早崎芳夫 (宇都宮大)
LST54-21	薄明視野顕微鏡法による金ナノ粒子の3次元位置計測の高精度化後藤和史、早崎芳夫(宇都宮大)
LST54-22	OCT応用のための分散チューニングレーザの狭線幅化
LST54-23	招待講演 マイクロ分光素子を用いたイメージセンサの高感度化技術西脇青児、中村達也、鈴木正明(パナソニック)
LST54-24	BOCDRによる光ファイバ歪・温度分布測定システムの簡素化
LST54-25	温度・歪の変化を有する光ファイバにおいて相関領域法によって局所発生させたブリルアンダイナミックグレーティング
	の反射スペクトルの導出
LST54-26	FFTを使用したBOTDRの周波数測定精度の検討
LST54-27	位相変調プローブ光を用いた非周波数掃引型BOTDAの数値解析と歪測定精度の改善…辻健一郎、萩原孝平、上原知幸、小野寺紀明(防衛大)
LST53-16	国際会議報告 第23回光ファイバセンサ国際会議報告
笙55回头	光波センシング技術研究会 2015年6月9~10日
LST55-1	イントロダクトリートーク - 光を用いたバイオ・化学センシングの進展
LST55-2	RGB画像を用いたヒト皮膚血行動態とストレス応答の評価
L5133 2	青木佑太「、星輝」、西舘泉「、新関久一」、相津佳永。(農工大「、山形大」、室蘭工大。)
LST55-3	Monitoring effect of heavy metal on ultra short-term growth fluctuation of plants using a highly sensitive interferometric technique
20100 0	K.T.K.M. De Silva ^{1,2} 、Hirofumi Kadono ¹ 、Tetsushi Yonekura ³ (埼玉大 ¹ 、ルフナ大 ² 、埼玉県環境科学国際センター ³)
LST55-4	へモグロビン等吸収点波長の拡散反射率を利用した皮膚の色素量と等価散乱係数の同時計測
LST55-5	招待講演 バイオと光を使った高感度なガスセンサ: 生体ガス及びVOC計測応用
LST55-6	招待講演 電子線励起による超解像バイオイメージング
LST55-7	VCSELを用いた偏光制御型共焦点光学系システムの動作条件と共焦点信号
LST55-8	テンポラルゲート法とアポダイズ法を用いたブリルアン光相関領域リフレクトメトリ
LST55-9	ブリルアン光相関領域リフレクトメトリの高速化および各種性能向上
LST55-10	三角波位相変調光による高速振動変位計測―深い変調による自動較正
LST55-11	Link between optical frequency comb profilometry and optical interferometry for long depth measurements
L5155 11	Quang Duc Pham、Yoshio Hayasaki (宇都宮大)
I ST55 12	シャックハルトマン波面センサを用いて拡張輪郭法による光渦位置の高精度検出
	光学干渉計を用いた2層構造試料の層毎スペクトル計測
	招待講演 集積化光バイオセンサ
	カスケード型長周期光ファイバグレーティングを用いたひずみセンサアレイ
25155 15	- チャネルスペクトルのフーリエ解析を利用した多重化動作田中哲、月田統、ゴ タン トゥン、和田篤、髙橋信明(防衛大)
I ST55_16	プラスチック光ファイバ中のモード間干渉を用いた超高感度温度センシング:広域温度特性の解明
L3133-10	沼田剛毅、林寧生、田原麻梨江、水野洋輔、中村健太郎(東工大)
I ST55_17	OTDRを用いたプラスチック光ファイバの温度メモリ効果の検証
	招待講演 バイオ・ケミカルセンサとしての導波モードセンサ
	招待講演 ナノ粒子・ナノホールを利用したプラズモニックセンサー
	金属ナノ粒子を分散した液晶メタマテリアルにおける無損失Dyakonov表面波の存在条件
	金属ナノセナを力取りに成語とする・プラブルにおいる無頂大Dyakonov教面版の行在来に
1.01.00-42	多点計例のパミのの表面フラスモン共鳴を用いた終端反射空ペテロコア元ファイバが系センリの心台特性評価
I CT55 22	横木監、、四山道子、、井川見隆、、関馬心、、渡辺一弘 (
	招待講演 マイクロ・ナノマシニング技術を用いた低侵襲医療機器・ヘルスケア機器の開発
	バイオスペックル血流イメージング: 速度域に応じた血流評価パラメーターの選択横井直倫「、相津佳永 ² (旭川高専「、室蘭工大 ²)
LS155-26	超小型蛍光偏光度測定装置の高感度化および微生物遺伝子の計測
Lomes	鶴岡誠、小泉大和、渡邊悠、東城裕樹、古家竜之輔、湯沢友之(東京工科大)
LST55-27	生体内部振動の可視化を目指した多波長走査型en-face OCTシステムの開発

第56回光波センシング技術研究会 2015年12月8~9日 LST56-2 LST56-3 Ultrafast dynamics of uracil and thymine studied with a sub-10fs deep ultraviolet laser Bing Xue^{1,2}、Atsushi Yabushita³、Takayoshi、Kobayashi^{1,2,3,4}(電通大¹、JST, CREST²、National Chiao-Tung Univ.³、阪大⁴) LST56-4 今出圭亮、松尾晃佑、小山大介、秋山いわき(同志社大) LST56-5 ワンショットかつ高解像度な光波面計測に向けた仮想干渉縞生成手法 LST56-6 野澤仁1、岡本淳1、戸田昌孝2、久野靖幸2、富田章久1(北大1、アイシン精機2) LST56-7 LST56-8 LST56-9 福知清、中村滋、竹下仁士、柳町成行、田島章雄(NEC) 石井勝弘'、西村靖彦1.2、花山良平'、森芳孝'、北川米喜'、関根尊史3、栗田隆史3、佐藤仲弘3、川嶋利幸3、菅博文3、西哲平4、日置辰梗5、 東博純、元廣友美、砂原淳、千徳靖彦、三浦永祐。 (光創成大・、トヨタテクニカルディベロップメント2、浜松ホトニクス3、豊田中研・、 名大⁵、あいちSRセンター⁶、レーザー総研⁷、ネバダ大リノ校⁶、産総研⁹) LS6T56-11 チャープパルス光周波数干渉速度計測における干渉縞解析...... 花山良平1、石井勝弘1、西村靖彦12、森芳孝1、北川米喜1、関根尊史3、栗田隆史3、佐藤仲弘3、川嶋利幸3、菅博文3、西哲平4、日置辰禄5、 東博純。、元廣友美、砂原淳、、千徳靖彦、、三浦永祐。 (光創成大・、トヨタテクニカルディベロップメント2、浜松ホトニクス3、豊田中研・、 名大⁵、あいちSRセンター⁶、レーザー総研⁷、ネバダ大リノ校⁸、産総研⁹) LST56-12 アクロマティック位相シフト低コヒーレンスディジタルホログラフィ:ゼロ位相シフトエラー条件の理論的考察 および線形と非線形キャリブレーション......早崎芳夫(宇都宮大) LSTS6-13 ホログラフィックベクトル波フェムト秒レーザー加工を用いたガラスの表面改質...............................長谷川智士、早崎芳夫(宇都宮大) LST56-17 Single shot tomography and profilometry by means of pseudo comb interferometer using discrete frequency swept laser. Banh Ouoc Tuan, Tatsutoshi Shioda (埼玉大) LST56-23 Distributed measurement of Brillouin dynamic grating in Brillouin optical correlation domain reflectometry... Yuguo Yao、Masato Kishi、Kazuo Hotate (東大) LST56-26 バイオスペックルイメージングによる自律神経機能の評価...... 横井直倫1、島谷祐一2、京相雅樹2、船水英希3、湯浅友典3、相津佳永3 (旭川高専1、東京都市大2、室蘭工大3) LST56-28 **招待講演** 光コムを用いた高速・高精度なガス検出法の開発...... 大久保章、岩國加奈、稲場肇、保坂一元、大苗敦、佐々田博之、洪鋒雷(産総研) LST56-30 アシストコイルを用いた単一光ファイバ電磁駆動内視鏡......李宣、芳賀洋一、松永忠雄(東北大) LST56-34 ダイナミックスペックルに基づくfOCTを用いた多層膜乾燥の粘性評価......深井俊宏^{1.2}、門野博史¹(埼玉大¹、東洋精機製作所²) LST56-35 非接触計測による脈波伝播速度の評価..............中野和也'、青木佑太'、星輝'、佐藤遼太'、鈴木裕之'、西舘泉'(理科大'、農工大'、東工大')

津田卓雄1、江尻省2、西山尚典2、中村卓司2、阿保真3、川原琢也4 (電通大1、極地研7、首都大3、信州大4)

高橋透¹、野澤悟徳²、細川敬祐¹、津田卓雄¹、川原琢也³、斎藤徳人⁴、和田智之⁴、小川泰信⁵、堤雅基⁵、川端哲也²

(電通大¹、名大²、信州大³、理研⁴、極地研⁵)

第57回分	光波センシング技術研究会 2016年6月14~15日
LST57-1	イントロダクトリート―ク 一光ファイバセンシング技術の最前線一
LST57-2	招待講演 誘電体多層膜フィルタを利用した光ファイバセンサ
LST57-3	4波長反射レベル計測方式(QWPR)によるファブリペロ―干渉計多点観測システム井上恵一、小松康俊 (渡辺製作所)
LST57-4	位相シフト光パルス干渉法による地動のノイズ観測
	平山義治、吉田稔」、高原穆之「、加志元史」、池田敏晴「、竹内敬二」、水野洋輔、、中村健太郎(白山工業「、東工大)
LST57-5	招待講演 高信頼・低価格へテロコア光ファイバ構造物点検・監視装置の開発と実証試験
	渡辺一弘「、西山道子」、佐々木博幸 ² 、奈良一孝 ³ 、掘井尚登 ⁴ 、鎌田仁 ⁴ (創価大「、Core System Japan ² 、古河電工 ³ 、JMACS ⁴)
LST57-6	招待講演 線形光サンプリング法による光ファイバのインパルス応答測定
LST57-7	高周波位相変調干渉計による高速変位の計測土屋光揮、木村亮祐、伊藤孝優、田中洋介、黒川隆志(農工大)
LST57-8	Si-APD二光子吸収応答のFBGセンサ応用根本昌弥、山田祥規、田中洋介、黒川隆志(農工大)
LST57-9	低反射率チャープ型FBGファブリ・ペロー干渉計を用いたひずみセンサの検討齋藤隼輝、和田篤、永塚真弓、田中哲、髙橋信明(防衛大)
LST57-10	カスケード型チャープ長周期光ファイバグレーティングを用いたひずみと温度の分離同時測定
	永塚真弓、小泉雅佳、ゴ タン トゥン、齋藤隼輝、田中哲、和田篤、高橋信明(防衛大)
LST57-11	招待講演 光直流電圧·電流計
LST57-12	レーザー技術によるインフラ構造物のリモート診断技術開発
	村上武晴、斎藤徳人、小町祐一、岡村幸太郎、坂下亨男、木暮繁、加瀬究、和田智之、緑川克美(理研)
LST57-13	繰り返し荷重下でのFBGを用いた動的ひずみ分布計測の精度と確度の検証
	藤森文也、玉置哲大、村山英晶、影山和郎、松尾剛、和田大地、井川寛隆(東大)
LST57-14	FBGセンサによる接着接合内部の損傷モニタリングに関する基礎検討
	織笠千春「、吉岩明彦「、水野洋輔」、中村健太郎、中村一史」、松本幸大「(豊橋技科大」、東工大」、首都大り
LST57-15	招待講演 宇宙機構造系の研究課題と光ファイバセンシングへの期待
LST57-16	レーザー光散乱場によるナノ粒子のトラッピング:数値シミュレーションによる特性評価横井直倫「、相津佳永² (旭川高専「、室蘭工大²)
LST57-17	PSP-BOTDRで測定したブリルアン散乱光のスペクトル
LST57-18	散乱スペクトルの傾斜を用いたブリルアン光相関領域リフレクトメトリ李熙永 ¹ 、林寧生 ² 、水野洋輔 ¹ 、中村健太郎 ¹ (東工大 ¹ 、東大 ²)
LST57-19	ポンプ・プローブ・リード光時分割発生方式ブリルアン光相関領域解析法による温度と歪の分離測定の精度向上
	白倉勇紀、岸眞人、保立和夫(東大)
LST57-20	招待講演 構造物のヘルスモニタリングの為の光ファイバ神経網技術-原理、機能、応用-
LST57-21	ファイバー光コム共振器型ひずみセンサーの開発
	南川丈夫 ^{1,2} 、小倉隆志「、増岡孝」、中嶋善晶 ^{2,3} 、山岡禎久 ⁴ 、美濃島薫 ^{2,3} 、安井武史 ^{1,2} (徳島大「、JST-ERATO ² 、電通大 ³ 、佐賀大)
LST57-22	モード同期ファイバレーザーによるチャープした光コムのスペクトル干渉を用いた長距離イメージング手法の開発
	加藤峰士 ^{1,2} 、内田めぐみ ¹ 、美濃島 薫 ^{1,2} (電通大 ¹ 、JST-ERATO ²)
LST57-23	Fiber-loop ringdown法を用いたマルチモード干渉構造光ファイバ屈折率センサの高感度化直良将史、深野秀樹、田上周路(岡山大)
	フューモードマルチコア光ファイバへのFBG形成
	石原啓樹'、植村仁'、佐々木雄佑'、大道浩児'、藤澤剛'、齊藤晋聖'(フジクラ'、北大')
LST57-25	招待講演 超大容量光ファイバ通信を目指す空間多重・モード多重伝送
LST57-26	招待講演 中空光ファイバ分光プローブの医療応用 -無侵襲血糖値測定など松浦祐司(東北大)
LST57-27	拡散媒質のOCT吸収・散乱係数計測
	デジタルコヒーレント受信を用いたSS-OCTのFull-range測定
	ポンプ・プローブ法による光ファイバ中の後方導波音響波型ブリルアン散乱の特性評価
	林寧生「、李熙永2、水野洋輔2、中村健太郎3(東大1、東工大2)
LST57-30	イメージフュージョン- 可視位相像を用いた近赤外像の解像度向上
第58回分	光波センシング技術研究会 2016年12月8~9日
	イントロダクトリートーク - 微弱光計測

	林寧生「、水野洋輔」、中村健太郎、、セット ジイヨン「、山下真司」(東大」、東工大党)
LST58-3	PSP-BOTDRにおけるパルス間隔の検討
LST58-4	傾斜利用BOCDRのプラスチック光ファイバへの適用李熙永 ¹ 、林寧生 ² 、水野洋輔 ¹ 、中村健太郎 ¹ (東工大 ¹ 、東大 ²)
	West 113 - A STATE OF THE STATE

I CTT CO. C	
LST58-5	ブリルアンスペクトル解析によるGeO₂ドープ2モード光ファイバのΔneg分布測定################################
LST58-6	横田聖司「、伊藤文彦」、丸山遼(、桑木伸夫(島根大「、フジクラ ²) 招待講演 レーザーカオスと金属V溝を用いた高効率テラヘルツ分光システム
L3136-0	乗島史欣'、白尾拓也'、岩尾憲幸'、赤峰佑介'、大井真夏'、坂上直哉'、白崎拓郎'、合田汐里'、谷正彦'、栗原一嘉'、
	山本晃司、森川治、長島健、中島誠(福井工大」、福井大、 海南大、 海上保安大 (阪大)
LST58-7	招待講演 単一光子感度を目指した超高感度CMOSイメージセンサ川人祥二、徐珉雄(静岡大)
LST58-8	励起フォノンを用いたBrillouin散乱測定の高速化に関する検討
L5130 0	柴垣慶明'、川部昌彦'、柳谷降彦'、高柳真司'、鈴木雅視'、松川真美'(同志社大 ¹ 、早稲田大 ² 、名工大 ³)
LST58-9	超音波による液晶中の屈折率パターン制御清水裕貴「、小山大介」、江本顕雄「、中村健太郎」、松川真美「(同志社大」、東工大)
LST58-10	超音波振動により潰したプラスチック光ファイバを用いた屈折率センシング
2010010	島田俊平'、李熙永'、閑誠'、田中宏樹'、林寧生 ² 、松本幸大 ³ 、田中洋介 ⁴ 、中村一史 ⁵ 、水野洋輔 ¹ 、中村健太郎 ¹
	(東工大 ¹ 、東大 ² 、豊橋技科大 ³ 、農工大 ⁴ 、首都大東京 ⁵)
LST58-11	
2010011	永塚真弓、小泉雅佳、齋藤隼輝、田中哲、和田篤、高橋信明(防衛大)
LST58-12	招待講演 単一光子による分光イメージング技術の開発
LST58-13	二重正弦波位相変調法を用いた生体ナノ振動計測技術の開発太田岳、崔森悦、任書晃、日比野浩(新潟大、AMED-CREST、AMED)
LST58-14	
LST58-15	
LST58-16	国際会議報告 POF2016報告 水野洋輔、皆川和成、李熙永(東工大)
LST58-17	国際会議報告 APOS2016報告
LST58-18	Influence of cavity involved frequency scanning laser to interferometry
LST58-19	超短パルスレーザ・スーパーコンティニューム光源等コヒーレンス長の短い光に適用可能なシェアリング干渉計を用いた発散角計測
20100 19	伊ヶ崎泰則、和仁陽太郎、奥間惇治(浜松ホトニクス)
LST58-20	LED信号灯器着雪・凍結対策評価システムの開発及び実証実験
25100 20	宮川大志!、宮田和弥!、小野浩之!、佐々木進 ² 、岡部敏弘 ² 、渡邊貴紀 ³ 、木村純 ³ 、斉藤栄誉 ³ 、佐々木仁 ³ 、工藤彰 ³
	(青森県産業技術センター、21あおもり産業総合支援センター、青森県警察本部)
LST58-21	招待講演 天体観測用可視光検出器
LST58-22	招待講演 微弱発光計測を用いた食品の評価
LST58-23	半導体レーザの自己結合効果を利用したセンサにおける2値化信号処理
	VCSELを用いた偏光制御型共焦点光学系における共焦点信号高分解能化
LST58-25	招待講演 マルチチャンネルフーリエ変換型微弱発光分光分析装置の開発と応用佐藤親弘'、石井浩'、中田宗隆'(上島製作所'、農工大')
LST58-26	招待講演 冷陰極HARP撮像板(FEA-HARP)の開発
LST58-27	
LST58-28	単一光子計数散乱計を用いた回折光学素子の形状推定
LST58-29	ラマン動的光散乱法による粒質計測
第59回3	光波センシング技術研究会 2017年6月6~7日
LST59-1	イントロダクトリートーク 一耐環境光計測技術
LST59-2	バイオスペックルによる皮膚血流・血液濃度変化イメージング:上腕血流抑制に対する応答の解析
2010, 2	横井直倫「、岡崎隼也2、篠原智美2、京相雅樹2、島谷祐一3、船水英希2、湯浅友典2、相津佳永2(旭川高専1、室蘭工大2、東京都市大3)
LST59-3	簡易型定量位相顕微鏡を用いたタイムラプス生細胞形態観察
	後藤謙太郎「、平川聡史 ² 、山内豊彦「、山田秀直」、岡崎茂俊 ² 、上田之雄「(浜松ホトニクス」、浜松医大 ²)
LST59-4	全排水毒性試験のためのディジタルホログラフィを用いたミジンコの形状計測砂山幸太、石黒将平、宮川一志、早崎芳夫(宇都宮大)
LST59-5	スペックル・シアリング干渉計測による生体表面の振動計測
LST59-6	招待講演 フレキシブルな光ファイバ電流センサの開発と既設電力設備監視への応用黒澤潔 (元東京電力)
LST59-7	招待講演 放射線環境下での溶融シリカ光ファイバ実用化を目指した、溶融シリカの放射線損傷特性に関する研究四竈樹男 (八戸工大)
LST59-8	バイオイメージングのための反射型分光ミュラー行列顕微鏡堀口智央、ネイザン へーガン、 大谷幸利 (宇都宮大)
LST59-9	Dependence of measurement accuracy on the birefringence of PANDA fiber Bragg gratings in distributed simultaneous strain and temperature sensing
	Mengshi Zhu ¹ 、Hideaki Murayama ¹ 、Daichi Wada ² 、Kazuro Kageyama ¹ (東大 ¹ 、JAXA ²)
LST59-10	
LST59-11	
	Victor Shishkin ¹ 、Mengshi Zhu ¹ 、Alexey Wolf ² 、Alexandr Dostovalov ² 、Sergey Babin ² 、Hideaki Murayama ¹ (東大 ¹ 、Russian Academy of Sciences ²)
LST59-12	IEEE Photonics Society Japan Chapter主催招待講演 石油・天然ガス開発における光センサ技術の現状と動向

	田 <u>寺</u> 刑、 大阪 本側(ンュルンヘルシェ)
LST59-13	航空機モニタリングのための光ファイバンずみ分布計測システムの構築と飛行実証
I ST50 14	和田大地 ¹ 、井川寛隆 ¹ 、玉山雅人 ¹ 、葛西時雄 ¹ 、有薗仁 ¹ 、村山英晶 ² 、塩坪捷矢 ² (JAXA ¹ 、東大 ²) プラスチック光ファイバ中のモード間干渉に基づく片端光入射型歪・温度センサ
13137-14	河智仁'、沼田剛毅'、李熙永'、林寧生²、水野洋輔'、中村健太郎'(東工大'、東大²)
LST59-15	
LST59-16	多モードポンプ・プローブによる誘導ブリルアン散乱を用いた高感度ファイバセンサ
	尾崎裕太「、田中洋介」、黒川隆志21(農工大「、国立天文台2)
LST59-17	国 際会議報告 OFS-25報告
LST59-18	招待講演 分布型光ファイバセンサによるPC橋梁のモニタリング技術
LST59-19	
LST59-19	
LST59-20	
LST59-22	
LST59-23	
LST59-24	LED信号灯器着雪・凍結対策評価技術に関する検討
	宮川大志 ¹ 、宮田和弥 ¹ 、小野浩之 ¹ 、岡部敏弘 ² 、木村純 ³ 、佐々木仁 ³ 、斉藤栄誉 ³ (青森県産業技術センター ¹ 、21あおもり産業総合支援センター ² 、青森県警察本部 ³)
LST59-25	
LST59-26	村上武晴、斎藤徳人、小町祐一、道川隆士、坂下亨男、木暮繁、加瀬究、和田智之、緑川克美(理研) 招待講演 光ファイバーを用いた分布式ひずみ測定による地層安定性モニタリング技術開発
LST59-26	
LST59-28	
LST59-29	
LST59-30	
第60回为 LST60-1	光波センシング技術研究会 2017年12月5~6日 イントロダクトリートーク -新分野・新産業を創出する光波センシング
LST60-2	スペクトル領域干渉動的光散乱法による自己組織化析出プロセス解析
LST60-3	A study of measurement method of optical vortex in the far field region using Shack-Hartmann wavefront sensor
	Daiying Wang¹、Hongxin Huang²、Yoshinori Matsui²、Hiroshi Tanaka²、Haruyoshi Toyoda²、 Takashi Inoue²、Huafeng Liu¹(浙江大学¹、浜松ホトニクス²)
LST60-4	各種VCSELを用いた偏光制御型共焦点光学系における共焦点信号比較前田賢吾、西壽巳 (大阪工大)
LST60-5	招待講演 多光子励起による生体組織や脳の深部イメージング根本知己(北大)
LST60-6	招待講演 超解像バイオイメージングの原理と応用 藤田克昌 (阪大)
LST60-7	多波長走査型光干渉顕微鏡によるin-vivo内耳感覚上皮帯振動計測崔森悦、佐藤敬太、任文晃、太田岳、日比野浩 (新潟大)
LST60-8	偏光カメラを用いた微分干渉顕微鏡大容幸利、柴田秀平、高野航、ネイザン ヘーガン (宇都宮大)
LST60-9	UVA領域へ拡張した光伝搬モンテカルロシミュレーションと皮膚メラニン効果の考察
	相津佳永'、舛田勇二'、英勇斗'、宮澤翔太'、湯浅友典'、前田貴章'、船水英希'(室蘭工大'、資生堂'、釧路高専')
LST60-10	シリコーンベース3層皮膚ファントムの試作と可視域光学特性の検討
I CT/O 11	湯浅友典 ¹ 、橋本遼平 ¹ 、桑原照 ¹ 、前田貴章 ² 、船水英希 ¹ 、西舘泉 ³ 、相津佳永 ¹ (室蘭工大 ¹ 、釧路高専 ² 、農工大 ³) 招待講演 今は昔、偏波保持光ファイバの研究開発に携わって 一孔開加工技術のもたらしたものー
	竹侍講典 今は音、偏波保持エファイバの研究開発に携わって 一孔開加工技術のもだらしだもの
L3100-12	和田篤、田中哲、高橋信明(防衛大)
LST60-13	位相雑音補正線形サンプリング法を用いた広帯域スペクトル測定による3次分散係数β ₃ の測定
LST60-14	炭素繊維強化プラスチックに埋め込んだ光ファイバに沿った歪分布測定と破断点検出
	李熙永¹、萩原園子¹、越智寛²、松井孝洋²、松本幸犬³、田中洋介⁴、中村一史⁵、水野洋輔¹、中村健太郎¹ (東エ大¹、東レ²、豊橋技科犬³、農エ犬⁴、首都犬⁵)
LST60-15	異なる光波長における全フッ素化POF中のFBGのブラッグ波長の歪依存性
	石川諒、李熙永、A. Lacraz、A. Theodosiou、K. Kalli、水野洋輔、中村健太郎(東工大)
TST60-16	国際会議報告 POF2017報告
LST60-17	招待講演 フェムト秒レーザーを用いたパルステラヘルツ波:発生、計測、制御、応用

星野鉄哉 l 、渡辺紀生 l 、青木貞雄 l 、桜井健次 2 、伊藤雅英 l (筑波大 l 、NIMS 2)

I CTC 10	
	レーザー光散乱場によるナノ粒子のトラッピング:流れ場における特性評価横井直倫'、相津佳永²(旭川高専'、室蘭工大²)
LST60-20	招待講演 高出カシングルモードファイバレーザおよび加工応用
	内山圭祐、田久保勇也、市井健太郎、葛西洋平、柏木正浩、島研介、田中大一郎(フジクラ)
	招待講演 海中3-Dレーザスキャナとその周辺技術
	デジタルコヒーレントライダー
	シアン化水素を用いた半導体レーザの周波数安定化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	招待講演 地上・宇宙からの光による地球環境計測
	招待講演 IoTにおける光ファイバ分布センシングの動向及び課題岸田欣増、山内良昭、西口憲一(ニューブレクス)
LST60-27	PSP-BOTDRにおける長パルスプローブの検討
	BOCDRの温度分布空間分解能を向上する光ファイバ配線の面配置の提案:
LST60-29	後方SBSをシードとして用いた光ファイバ中の多段前方ブリルアン散乱の観測 林寧生 ¹ 、水野洋輔 ² 、中村健太郎 ² 、セット ジイヨン ¹ 、山下真司 ¹ (東大 ¹ 、東工大 ²)
第61回光	治波センシング技術研究会 2018年6月12~13日
LST61-1	イントロダクトリートーク 一光三次元形状計測の新展開一
LST61-2	高感度振動計測に向けたヘテロコア光ファイバ変位センサの開発山崎大志、西山道子、渡辺一弘(創価大)
LST61-3	両端を固定されたヘテロコア光ファイバによる単純支持点を付加した機械振動特性西山道子、渡辺一弘(創価大)
LST61-4	POF中のモード間干渉を用いた歪計測: 部分歪に対する応答
LST61-5	カスケード型チャープ長周期光ファイバグレーティングの水中音響センサへの応用
Tomas s	竹山隼人、福嶋匡謙、ブイ クォック ハン、田中哲、和田篤、高橋信明(防衛大)
LST61-6 LST61-7	シリコンフォトニクスを用いたガスセンシング
	· ·
LST61-8 LST61-9	招待講演 単眼カメラで撮影した1枚の画像から精緻な距離計測を可能とするカラー開口撮像技術宗祥久、尾崎裕太、田中洋介(農工大)
LST61-10	位相変調プローブ光とブリュアンファイバレーザを用いたBOTDA歪分布測定の多波長化
LST61-11	PANDAファイバを用いた傾斜利用BOCDR李熙永、水野洋輔、中村健太郎(東工大)
LST61-12	分布型光ファイバセンサを用いた逆有限要素法による角パイプ構造の三次元形状計測
LST61-13	測距不確定性除去機能を持つ高精細AMCWLiDARによる三次元形状計測
I CTC(1 14	張超 ^{1,2} 、林寧生 ¹ 、金磊 ¹ 、セット ジイヨン ¹ 、山下真司 ¹ (東大 ¹ 、アンリツ ²)
	招待講演 赤色立体地図の原理と応用 一航空レーザ計測のための地形表現ー
L3101-13	相津佳永 、小堀優太 、湯浅友典 、前田貴章、船水英希(室蘭工大 、釧路高専)
LST61-16	モンテカルロシミュレーションによる皮膚分光反射率のデータベース生成とスペクトル抽出
	湯浅友典」、端坂智樹」、前田貴章2、船水英希」、相津佳永「(室蘭工大」、釧路高専2)
LST61-17	RGBカラー画像を用いたin vivo脳機能イメージング蟹江卓矢「、Mustari Afrina ² 、稲葉将来「、川内聡子 ³ 、佐藤俊一 ³ 、佐藤学・、小久保安昭・、
	西舘泉「(農工大「、バングラデシュ農大」、防衛医大「、山形大」
LST61-18	反復アルゴリズムの半導体レーザー位相シフト干渉法への応用
	古内宏和「、小野寺理文」、斎藤誠二「、高橋毅」、石井行弘(職業大「、理科大)
LST61-19	国際会議報告 APOS2018報告
LST61-20	ランダムレーザー媒質作製のための微粒子制御:数値シミュレーションによる特性評価
	横井直倫「、岡本卓」、相津佳永。(旭川高専「、九州工大」、室蘭農大。)
LST61-21	超高速光波形計測へ向けた新規時間並列方式による光周波数コムアナライザの開発
2010121	湯田怜央奈、長谷川尊士、多田浩明、Nasrin Sultana、塩田達俊(埼玉大)
LST61-22	VIPA/エタロン直列共振器による周波数領域2次元光コム干渉のシングルショット断層計測の範囲拡大
LST61-23	高速波長スイッチングおよび高速カメラを用いたマルチスペクトルディジタルホログラフィ
LST61-24	偏光高速度干渉法を用いた超短パルスレーザ加工噴出物可視化
	安田浩一朗'、髙木亮汰'、石井勝弘'、藤田和久'、白井秀彰、坪井昭彦'(デンソー'、光創成大')
LST61-25	招待講演 新たなキログラムの定義を導くためのシリコン単結晶球体形状測定
	IEEE Photonics Society Japan Chapter主催招待講演 大規模環境 3 次元計測データからの物体認識とモデリング 金井理、伊達宏昭(北大)
LST61-27	Wearable functional near infrared spectroscopy device (HOT-1000) in investigating the performance of computation and word tasks
	upon consumption of green tea

LST61-28	圧縮センシングを用いたSS-OCTの信号再構成
LST61-29	光ノギスによる内径測定 金蓮花'、宮津暢人 ¹ 、近藤英一 ¹ 、ジェローズ・ベルナール ² 、金澤直文 ³ 、吉澤徹'(山梨大 ¹ 、名大 ² 、ナック ³ 、三次元工学会 ⁴)
LST61-30	
LST61-31	招待講演 高度運転支援・自動運転システムにおける光センシング技術柳井謙一 (デンソー)
LST61-32	超音波振動を用いたネマチック液晶分子の配向制御と評価
LST61-33	液晶マイクロドロップレットによるフォトニックナノジェット生成および電界制御の共焦点顕微鏡観察
	松井龍之介、二橋威留、佃和弥(三重大)
LST61-34	単一画素カメラを用いた分光計測
LST61-35	サブナノ秒ポンプ・プローブ計測システムの開発林弘通'、市橋隼人'、高柳真司'、松川真美'(同志社大'、名工大')
LST61-36	ポンプ・プローブ分光計測の強度雑音除去のためのパルス繰り返し位相検波法における位相雑音除去による信号雑音比の向上
	瀬戸啓介、徳永英司(理科大)
第62回	光波センシング技術研究会 2018年12月4~5日
LST62-1	イントロダクトリートーク - レーザー加工を利用したセンシング応用
LST62-2	スペクトル拡散法を用いたポンプ光同時多波長励起ポンプ・プローブ分光計測法
	山田弘夢'、瀬戸啓介'、小林孝嘉'、徳永英司'(理科大'、電通大学)
LST62-3	ポンプ・プローブ分光計測におけるパルス繰り返し位相検波法による光源強度雑音除去能の向上のための位相雑音除去 瀬戸啓介'、徳永英司'、小林孝嘉 ² (理科大'、電通大 ²)
LST62-4	がイオスペックルのフラクタル次元を利用した血流解析に関する基礎的検討
	横井直倫「、相津佳永2、魚住純3(旭川高専「、室蘭工大2、北海学園大3)
LST62-5	外部変調に基づくOCDRの実験的検証野田康平、韓起運、李熙永、水野洋輔、中村健太郎 (東工大)
LST62-6	招待講演 光ファイバ内分光セルを用いる生体分子検出
LST62-7	細径化させたPOF 中のブリルアン周波数シフトの大歪に対する依存性の解明 松谷夏樹'、李熙永'、林寧生 ² 、田原正樹'、細田秀樹'、水野洋輔'、中村健太郎'(東工大'、東大 ²)
LST62-8	偏波保持光ファイバで構成した傾斜利用型ブリルアン光解析法の実証林寧生、張超、金磊、セット ジイヨン、山下真司(東大)
LST62-9	Si-APD二光子吸収応答を利用した多点FBGセンシング ーアンダーサンプリングによる測定時間短縮 宮澤弘将、田中洋介(農工大)
LST62-10	カスケード型長周期光ファイバグレーティングを波長選択素子として用いた光ファイバレーザ 〜発振波長の温度への依存性〜 福嶋匡謙'、竹山隼人'、ブイ クォック ハン'、和田篤'、田中哲'、高橋信明'、伊藤文彦 ² (防衛大'、島根大 ²)
LST62-11	福鳴三課、刊山年へ、ノイ・クォック・ハン、和田島、田中省、高橋昌明、伊藤文彦(四浦入、島依人) 招待講演 超短パルスレーザー加工によるFBGセンサの製作 一高温配管への実装と歪計測への応用ー
LST62-12	招待講演 位相制御による超解像技術 - 3次元空間への応用展開
LST62-13	
LST62-14	多波長走査干渉と広視野へテロダイン法を導入した光コヒーレンス顕微鏡による内耳感覚上皮帯のin-vivo振動計測 崔森悦 ^{1,2} 、佐藤光平 ¹ 、村松正吾 ^{1,2} 、仕書晃 ^{1,2} 、太田岳 ^{1,2} 、日比野浩 ^{1,2} (新潟大 ¹ 、AMED-CREST、AMED ²)
LST62-15	Consideration of Freshness and Taste of Japanese Tomatoes - Comparison of Laser Biospeckle, Optical Coherence Tomography,
	Different Sensing Technologies and Human Perception.
	Uma Maheswari Rajagopalan ^{1,2} 、Yuya Tanaka ² 、Lim Yi Heng ³ 、Hirofumi Kadono ³ (芝浦工大 ¹ 、東洋大 ² 、埼玉大 ³)
LST62-16	
LST62-17	国際会議報告 OFS26報告
LS162-19	ベッセルビームを用いた集光光学系型三次元レーザースキャナーにおける焦点深度拡張
	張超、林寧生、劉斯凡、金磊、セット ジイヨン、山下真司(東大)
LST62-20	
	細胞分析を目的とした超短パルスレーザーによる低屈折率ポリマーの3次元加工技術開発
	招待講演 フェムト秒レーザー3次元加工によるバイオ・センシングチップの開発
LST62-24	被測定電界に対する電気光学プローブの擾乱解析 堀川拓実'、直江智哉'、品川満'、松本憲典'、勝山純'、田中仁章'(法政大'、横河電機) 差動検出による電気光学センサのレーザ雑音除去
L3102-23	是到機品による電気パチセンリのレーリ報音除去
LST62-26	招待講演 紫外レーザーを用いた超撥水性シリコーンの作製と水中での機能化
LST62-27	招待講演 フェムト秒レーザーを利用したナノ加工技術
LST62-28	
LST62-29	タイムストレッチ技術を応用した高繰り返し低コヒーレンス干渉計測
T comes as	星川雅春 ¹ 、石井勝弘 ¹ 、牧野健 ² 、橋本崇弘 ² 、古川英昭 ² 、和田尚也 ² (光創成大 ¹ 、NICT ²)
LS162-30	位相を制限した偏光ホログラムの反復フーリエ変換アルゴリズムの評価 細工将太、田村仁志、花山英治、小野寺理文 (職業大)

### *****	LST62-31	31 集光レーザ照射を用いた光散乱粒子センサ横井天太	ドレーザ照射を用いた光散乱粒子センサ横井天太朗、岩井俊昭(農工大)		
1576-14	LST61-19	19 国際会議報告 APOS2018報告	、萩原園子 (東工大)		
1576-14					
1516-32					
1.5116-14 2次元FTDTが出たよる光光接端の伝統の元計性・					
1576-3-1					
1516-5					
LSTIG-1					
1.5TiG-3					
1576-3-9					
1.5TG-3-9 遠度変調を用いた光相関領域数により局在化された光フィバ中のブリルアンダイナミックがレーティングの解析		伊東直紀1、岸眞人2、保立和夫1(豊	豊田工大 ¹ 、工学院大 ²)		
1876-3-9 強度変調を用いた。対したいたいたりすべいでのブリルアンダイナミックグレーティングの解析、	LST63-8	8 光位相変調手法を中心としたBOCDR歪分布測定技術のシステム構成簡素化			
大川洋平、山下健二木ドリーゴ、岸頂人、保立和夫 (豊田工大、古河電工、工学除大) 15T63-10 チャーブ変調法を用いたブリルアン光相開節段反射性の測定レンが拡大. 野田東平、栗眼永、水野洋輪、中村健北郎(東工大) 15T63-12 APP 1756-13 ARP 1756-14 ARP 1756-14 ARP 1756-14 ARP 1756-15 ARP 17		宇山康太「、清水龍」、岸眞人3、保立和夫「(豊田工大	¹ 、東大 ² 、工学院大 ³)		
1516-10	LST63-9	9 強度変調を用いた光相関領域法により局在化された光ファイバ中のブリルアンダイナミックグレーティングの解析			
18T63-11 招補譲渡 3D LDARI に経滅維持を用いた高詩種配現時格配明とその応用					
ISTG-12					
IST63-13 広帯域レーザ光源によるスペックルを低減した内面形状計測					
15T63-15 お作務度 高度達転支援システムのセンシングと運動制御〜交通事故ゼロおよび突極の乗り心地を目指して〜 ボンサトーン ラクシンチャラーンサク (漢工大) 15T63-15 15T63-15 15T63-16 15T63-16 15T63-16 15T63-16 15T63-16 15T63-16 15T63-16 15T63-16 15T63-16 15T63-17 15T63-16 15T63-17 15T63-17 15T63-17 15T63-17 15T63-18 15T63-17 15T63-18 15T63-18 15T63-17 15T63-19 15T63-1					
ボンサトーン ラクシンチャラーンサク (景工大) 1ST63-15 ヒト指先の/イオスペックル血流・血液濃度変化計測:上腕部カフ低圧迫時の応答解析					
長井直僧、湯茂友典*、船水英希*、相神佳永* (旭川高東、室蘭工犬) 15T63-16 音の植物活動への影響: レーザーバイオスペックル法および光財層画像法による研究	L3103-14				
15T63-16	LST63-15				
Fig.		横井直倫「、湯浅友典2、船水英希2、相津佳永2(九	則高専 ¹ 、室蘭工大 ²)		
ISTG3-17	LST63-16	16 音の植物活動への影響:レーザーバイオスペックル法および光断層画像法による研究			
LST63-18 福格譲渡 Pedestrian Detection by Shallow Learning on Deep Representations		平井実「、涌本遼太郎」、Uma Maheswari Rajagopalan」、Lim Yiheng²、門野博史²、山田純「	(芝浦工大 ¹ 、埼玉大 ²)		
IEEE Photonics Society Japan Chapter主催招待譲渡 Siフォトニック結晶スローライト偏向器とLiDAR開発 馬場俊彦 (横浜国大) LST63-20 自動運転技術のためのストークスイメージング偏光計 柴田秀平、ネイサン ハーガン、大谷奉利(宇都宮大) LST63-21 位相変調信号との強度相関を用いたリアルタイムレーザ変位測定 柏倉直輝、山本健太、山口京介、田中洋介(農工大) LST63-22 招待譲渡 車載向け大容量有無線状伝送技術 相葉孝芹、菅野教史・山本直克・川西哲也・若林知猷 (矢崎総楽、NICT、早大) LST63-23 招待譲渡 国土交通省の自動運転へ取り組み 池田裕二、井坪慎二 (国総研) LST63-24 出て近きの自動運転へ取り組み 池田裕二、井坪慎二 (国総研) LST63-25 カスケード型長周期光ファイパグレーティングを用いた波射線センシングの検討 一規田浩久、篠崎政人、若宮達也、澤田一輝、今井洋(茨城大) ST63-25 カスケード型長周期光ファイパグレーティングを用いた波射線センシングの検討 小本・大・マヌエル グテレス ソアレス・和田第一、田中哲・伊藤文彦 (店前大・島根大) 第64回光波センシング技術研究会 2019年12月10~11日 LST64-1 イントロダクトリートーク 一材料科学がもたらす光センシングの新展開 松井龍金介(三重大) LST64-2 バイオスペックル血流イメージングにおけるスペックルサイズと速度検出特性の評価 機井歯倫・相津佳永 (旭川高専・室蘭工大) LST64-3 熱的実力性検出多焦点光熱顕微鏡の開発とその細胞生理病理過程の解明への応用 機内衛・瀬戸啓介・小林孝嘉・徳永英司(理科大・電通大) エ大・1876-4 高速度多色超解像顕微鏡の開発とその細胞生理病理過程の解明への応用 操内衛・瀬戸啓介・小林孝嘉・中田和印、狩野豊・徳永英部(『電通大・明治大・東治大・WトST7) LST64-5 光学的に厚い散乱性媒質の透明感に関する研究 星谷政宏、河野貴格、Uma Maheswari Rajagopalan、山田総(芝浦工大) LST64-6 情間領域のCTIにおける回転ミラーを用いた足の印象と 原本・原本・原本・原本・原本・原本・原本・原本・原本・原本・原本・原本・原本・原	LST63-17				
LSTG-2-20 自動運転技術のためのストークスイメージング優光計	LST63-18				
ISTG-2-1 位相変調信号との強度相関を用いたリアルタイムレーザ変位測定	LST63-19				
LSTG-22 招待講演 車載向け大容量有無線光伝送技術	LST63-20				
IST63-23 招待講演 国土交通省の自動運転への取り組み 池田裕二、井坪慎二 (国総研) IST63-24 ファイバブラッググレーティングを用いた放射線センシングの検討 機両浩久、篠崎政人、若宮達也、澤田一輝、今井洋(茨城大) カスケード型長周期光ファイバグレーティングを用いた波長可変EDFレーザ 福嶋匡謙、ブイ クォック ハン、仲矢光希」、マヌエル グテレス ソアレス」、和田篤、田中哲・伊藤文彦 (防衛大・島根太) 第64回光波センシング技術研究会 2019年12月10~11日 IST64-1 イントロダクトリートーク - 材料科学がもたらす光センシングの新展開 松井龍合、相津佳永 (旭川高専・室蘭工犬) IST64-2 バイオスペックル血流イメージングにおけるスペックルサイズと速度検出特性の評価 機井直倫、相津佳永 (旭川高専・室蘭工犬) IST64-3 熱が異方性検出多焦点光熱顕微鏡の開発 機内衛・瀬戸啓介・小林孝嘉・徳永英司・伊邦大・電通犬) IST64-4 高感度多色超弱保護微鏡の開発とその細胞生理病理過程の解明への応用 小林孝嘉・4、中田和明・狩野豊・徳永英司・4 (電通大・明海犬・理科犬・W-FST・クトリート IST64-5 光学的に厚い散乱性媒質の透明感に関する研究 星谷政宏、河野貴裕、Uma Maheswari Rajagopalan、山田純(芝浦工大) IST64-6 時間能域のCTIにおける回転ミラーを用いたRSODの設計 黒谷神漢 カーボンナノチューブのアッブコンバージョン発光を用いたバイオイメージング 宮内雄平(京犬) IST64-7 招待講演 水晶を用いた塗布成膜型回所格子による波面制御 吉田浩之、尾崎雅則 (阪犬) 直接探索を用いて位相制限された偏光・カーグラムの位相接針 嘉陽宗平、田村仁志、花山英治、小野寺理文、職業大 IST64-10 光架橋性高分子液晶を用いた偏光回折格子の形成及び偏光イメージングへの応用 坂本盛嗣、山田航也・百崎龍成・野田浩平・佐々木友之・川月喜弘・小野浩司・(長岡採利犬・兵庫県立犬・クトライ・スト・撮影法を用いた一様での形成及び偏光イメージングへの応用 「東京社・大の下部宮大 IST64-11 Review of polarization effects in the thermal infrared Nathan Hagen、Shuhei Shibata、Yukitoshi Otani(宇都宮大 IST64-12 バースト撮影法を用いたディジタルホログラフィ LST64-13 I名を開発表 ・高感度バイオセンサを実現する人工光学物質「メタマテリアル」 金森義明(東北大)					
に対している。 に対しているに対している。 に対している。 に対しているにはないる。 に対している。 に対しているにはないる。 に対している。 に対している。 に対している。 に対している			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
18763-25 カスケード型長周期光ファイバグレーティングを用いた波長可変EDFレーザ 福嶋匡謙!、ブイ クォック ハン'、仲矢光希!、マヌエル グテレス ソアレス!、和田篤!、田中哲!、伊藤文彦! (防衛大!、島根犬!) 第64回光波センシング技術研究会 2019年12月10~11日 IST64-1					
第64回光波センシング技術研究会 2019年12月10~11日 LST641 イントロダクトリートーク - 材料科学がもたらす光センシングの新展開- 松井龍之介(三重大) LST642 バイオスペックル血流イメージングにおけるスペックルサイズと速度検出特性の評価 機井直倫、相津佳永²(旭川高専'、室蘭工犬²) LST643 熱的異方性検出多焦点光熱顕微鏡の開発・その細胞生理病理過程の解明への応用 操や債'、瀬戸啓介'、小林孝嘉²(徳永英司'(理科大'、電通犬²) LST644 高感度多色超解像顕微鏡の開発とその細胞生理病理過程の解明への応用 操や債'、 瀬戸啓介'、小林孝嘉²(電通大'、明海大'、理科大'、W-FST') LST645 光学的に厚い散乱性媒質の透明感に関する研究 早谷改宏、河野貴裕、Uma Maheswari Rajagopalan、山田純(芝浦工大) LST646 時間領域のCTIにおける回転ミラーを用いたRSODの設計・ 藤浦勇気、小野寺理文、田村仁志、花山英治(職業大) LST647 招待講演 液晶を用いた塗布成膜型回折格子による波面制御 吉田浩之、尾崎雅則(阪大) 直接探索を用いて位相制限された偏光ホログラムの位相設計・ 嘉陽宗平、田村仁志、花山英治、小野寺理文 (職業大) LST6410 光架橋性高分子液晶を用いた偏光向野旅及び偏光イメージングへの応用 坂本盛嗣'、山田航也'、百崎龍成'、野田浩平'、佐々木友之'、川月喜弘'、小野浩司'(長岡技科大'、兵庫県立大²) LST6411 Review of polarization effects in the thermal infrared. Nathan Hagen、Shuhci Shibata、Yukitoshi Otani (宇都宮大) LST6411 Review of polarization effects in the thermal infrared. LST6411					
#64回光波センシング技術研究会 2019年12月10~11日 LST641 イントロダクトリートーク - 村料科学がもたらす光センシングの新展開- 松井龍之介(三重大) LST642 バイオスペックル血流イメージングにおけるスペックルサイズと速度検出特性の評価	LS103-23				
LST64-1 イントロダクトリートーク - 村料科学がもたらす光センシングの新展開		TBP写上球、フィック・ハン、 ア人ル市、マスエル ファレス ファレス、和山馬、山中台、 FMX人2	(阿州人、岛低人)		
LST642 バイオスペックル血流イメージングにおけるスペックルサイズと速度検出特性の評価	第64回光波センシング技術研究会 2019年12月10~11日				
LST64-3 熱的異方性検出多焦点光熱顕微鏡の開発	LST64-1	1 イントロダクトリート―ク 一材料科学がもたらす光センシングの新展開-	.松井龍之介(三重大)		
LST644 高感度多色超解像顕微鏡の開発とその細胞生理病理過程の解明への応用。	LST64-2	2 バイオスペックル血流イメージングにおけるスペックルサイズと速度検出特性の評価横井直倫'、相津佳永 ² (加	J川高専 ¹ 、室蘭工大 ²)		
小林孝嘉 ^{1,4} 、中田和明 ² 、狩野豊 ¹ 、徳永英司 ^{3,4} (電通大 ¹ 、明海大 ² 、理科大 ³ 、W-FST ⁴) LST645	LST64-3				
LST64-5光学的に厚い散乱性媒質の透明感に関する研究	LST64-4				
LST64-6時間領域OCTにおける回転ミラーを用いたRSODの設計	LCT(A.5				
LST64-7招待講演カーボンナノチューブのアップコンバージョン発光を用いたバイオイメージング宮内雄平(京大)LST64-8招待講演液晶を用いた塗布成膜型回折格子による波面制御吉田浩之、尾﨑雅則(阪大)LST64-9直接探索を用いて位相制限された偏光ホログラムの位相設計嘉陽宗平、田村仁志、花山英治、小野寺理文(職業大)LST64-10光架橋性高分子液晶を用いた偏光回折格子の形成及び偏光イメージングへの応用坂本盛嗣、山田航也」、百崎龍成「、野田浩平」、佐々木友之」、川月喜弘2、小野浩司「長岡技科大」、兵庫県立大2LST64-11Review of polarization effects in the thermal infraredNathan Hagen、Shuhei Shibata、Yukitoshi Otani (宇都宮大)LST64-12バースト撮影法を用いたディジタルホログラフィ氏家拓海、早崎芳夫(宇都宮大)LST64-13招待講演小型分光器・高感度バイオセンサを実現する人工光学物質「メタマテリアル」金森義明(東北大)					
LST64-8招待講演液晶を用いた塗布成膜型回折格子による波面制御吉田浩之、尾﨑雅則(阪大)LST64-9直接探索を用いて位相制限された偏光ホログラムの位相設計嘉陽宗平、田村仁志、花山英治、小野寺理文(職業大)LST64-10光架橋性高分子液晶を用いた偏光回折格子の形成及び偏光イメージングへの応用坂本盛嗣、山田航也」、百崎龍成」、野田浩平」、佐々木友之」、川月喜弘。、小野浩司」(長岡技科大」、兵庫県立大)LST64-11Review of polarization effects in the thermal infraredNathan Hagen、Shuhei Shibata、Yukitoshi Otani(宇都宮大)LST64-12バースト撮影法を用いたディジタルホログラフィ氏家拓海、早崎芳夫(宇都宮大)LST64-13招待講演小型分光器・高感度バイオセンサを実現する人工光学物質「メタマテリアル」金森義明(東北大)					
LST64-9直接探索を用いて位相制限された偏光ホログラムの位相設計					
LST64-10 光架橋性高分子液晶を用いた偏光回折格子の形成及び偏光イメージングへの応用					
坂本盛嗣、山田航也」、百崎龍成「、野田浩平」、佐々木友之」、川月喜弘。、小野浩司「長岡技科大」、兵庫県立大) LST64-11 Review of polarization effects in the thermal infrared					
LST64-11Review of polarization effects in the thermal infrared.Nathan Hagen、Shuhei Shibata、Yukitoshi Otani(宇都宮大)LST64-12バースト撮影法を用いたディジタルホログラフィ.氏家拓海、早崎芳夫(宇都宮大)LST64-13招待講演 小型分光器・高感度バイオセンサを実現する人工光学物質「メタマテリアル」金森義明(東北大)					
LST64-13 招待講演 小型分光器・高感度バイオセンサを実現する人工光学物質「メタマテリアル」金森義明(東北大)	LST64-11				
	LST64-12	12 バースト撮影法を用いたディジタルホログラフィ氏家拓海、	早崎芳夫(宇都宮大)		
LST64-14 MEMS-VCSELのための利得導波型光共振器の回折損失計算					
	LST64-14	14 MEMS-VCSELのための利得導波型光共振器の回折損失計算鈴木雄太、北川雄真、手	塚信一郎(横河電機)		

LST64-15	微小共振器の回折損失に対する凹面鏡・傾き・軸ずれの影響に関する検討北川雄真、鈴木雄太、手塚信一郎(横河電機)
LST64-16	透明電極界面の水のポッケルス効果による巨大光変調
	德永英司 1,2 、羽山大介 1 、瀬戸啓介 1 、山下恭平 1 、雪田俊平 1 、小林孝嘉 2 3 (理科大 1 、W-FST 2 、電通大 3)
LST64-17	招待講演 ダイヤモンドNVセンターを用いた広視野量子センシング野村晋太郎 (筑波大)
LST64-18	Si-APD二光子吸収応答とマルチコアFBGによる3次元ファイバ曲げ計測阿部哲也、園田直弘、田中洋介(農工大)
LST64-19	長周期ファイバグレーティングと電熱ヒータを用いた電気制御可変帯域阻止フィルタに関する研究杉本雄、西壽巳(大阪工大)
LST64-20	ヘテロコア光ファイバセンサ式ストレインゲージに関する基礎検討山崎大志、西山道子、渡辺一弘(創価大)
LST64-21	光周波数の任意波形変調に基づくBOCDRの提案野田康平「、李ひよん ^{1,2} 、水野洋輔、中村健太郎」(東工大「、芝浦工大 ²)
LST64-22	傾斜利用BOCDRによる光ファイバ中の偏波ビート長の分布測定李ひよん ^{1,2} 、野田康平 ² 、 水野洋輔 ⁸ 、中村健太郎 ² (芝浦工大 ¹ 、東工大 ²)
LST64-23	招待講演 光ポンピング原子磁気センサと次世代の脳機能イメージング
LST64-24	招待講演 金属ハライドペロブスカイトを用いた次世代発光デバイス
LST64-25	OFDRを用いた振動分布センシングによる架空光ファイバケーブルの弛み区間特定岡本達也、飯田大輔、押田博之(NTT)
LST64-26	レイリー後方散乱分布ひずみセンサの鉄筋コンクリート構造物への応用
LST64-27	招待講演 磁性体における超高速テラヘルツスピン分光とデバイス開発中嶋誠 (阪大)
LST64-28	招待講演 グラフェンを応用した高感度赤外線センサの開発
	小川新平「、嶋谷政彰」、福島昌一郎「、奥田聡志「、金井康」、小野尭生2、井上恒一2、松本和彦2(三菱電機「、阪大産研)
LST64-29	カスケード型長周期光ファイバグレーティングを用いたSOAリングレーザの温度依存性
	福嶋匡謙 1 、ブイ クォック ハン 1 、仲矢光希 1 、マヌエル グテレス ソアレス 1 、和田篤 1 、田中哲 1 、伊藤文彦 2 (防衛大 1 、島根大 2)
LST64-30	光熱偏向分光法のための共振器型Sagnac干渉計の開発千万大道 、塩川直幸 、瀬戸啓介 、小林孝嘉 、徳永英司 (理科大 、電通大)
LST64-31	周波数軸上での相関を利用した高速波形計測法についての基礎検討王木真人、多田浩明、八木達椰、塩田達俊(埼玉大)