CuInS₂-Cu₂ZnSnS₄結晶の作製と評価 Growth and characterization of CuInS₂-Cu₂ZnSnS₄ crystals

長岡工業高等専門学校
小川 貴史,中村 謙太,安芸 恵太,大石 耕一郎, 深井 翔太,山崎 誠,片桐 裕則
Takashi Ogawa, Kenta Nakamura, Keita Aki, Koichiro Oishi, Shota Fukai, Makoto Yamazaki, Hironori Katagiri Nagaoka National College of Technology

Abstract CuInS₂-Cu₂ZnSnS₄ crystals were synthesized in the range of x = 1.05 and $y = 0.0 \sim 1.0$ in Cu_{2(2.00-x)}((2In)_y(ZnSn)_(1.00-y))_xS₄. We investigated the possibility of replacing In in CuInS₂ crystals with Zn-Sn. The FWHM of 112 diffraction peaks increased in the region 0.3 $\leq y \leq 0.5$ in the powder X-ray diffraction. Derived lattice constants *a* and *c* showed the linear dependence on the composition ratio between In and Zn-Sn in the region $0.0 \leq y \leq 0.2$ and $0.6 \leq y \leq 1.0$.

1. はじめに

CuInS₂や Cu₂ZnSnS₄¹⁾は、太陽電池材料として最適な 1.5eV 程度の禁制帯幅を持つ 化合物である。CuInS₂を含むカルコパイライト系の太陽電池材料は、盛んに研究が行 われており、Cu(In,Ga)Se₂ 薄膜太陽電池の実用化に至っている。一方、Cu₂ZnSnS₄ は 原料コストの面から注目されており、現在、薄膜太陽電池で 8.4%のエネルギー変換 効率が報告されている²⁾。そこで本研究では、レアメタルである In を廉価な Zn-Sn で どの程度置き換えが可能かを検討するために、組成制御が比較的容易な溶融法により、 CuInS₂-Cu₂ZnSnS₄のバルク結晶の作製と評価を行った。

2. Cu₂ZnSnS₄の結晶構造

CuInS₂は、カルコパイライト構造に結晶化する。Cu₂ZnSnS₄は、その結晶構造が未 だ議論されているが、正方晶系の類似化合物である。Cu₂ZnSnS₄の結晶構造モデルを Fig.1 に示す。空間群 I $\overline{4}$ のモデルは、1978 年に Hall らが kesterite 鉱物試料 (Cu_{1.98}(Zn_{0.73}Fe_{0.29}Cd_{0.01})Sn_{0.94}S_{4.00})の単結晶 X 線回折による構造解析から報告³⁾して以 来、鉱物名 kesterite の Cu₂ZnSnS₄の結晶構造として広く引用されている。空間群 I $\overline{4}$ 2m のモデルは、合成した kesterite の単結晶 X 線回折(Bonazzi et al., 2003)や中性子線回折 (Schorr et al., 2007)の構造解析によって提案されたモデル⁴⁻⁶⁾である。相違点は、I $\overline{4}$ の 2c (0,1/2,1/4)と2d (0,1/2,3/4)における Cu と Zn の ordering が、I $\overline{4}$ 2m では不秩序(disorder) になっているところである。なお、Hall らによって示された stannite Cu₂(Fe,Zn)SnS₄ の結晶構造も空間群 I $\overline{4}$ 2m に属し³、その構造は Cu₂FeSnS₄ 及び Fe-rich の Cu₂(Fe,Zn)SnS₄に対してのみ Bonazzi らや Schorr らによっても確認されている^{4.5)}が、 Fig.2 に示す I $\overline{4}$ 2m のモデルとは、2a (0,0,0)や4d (0,1/2,1/4)を占める原子が異なる。

Fig.1 Crystal structure models for the kesterite Cu_2ZnSnS_4 : $I\bar{4}^{33}$ (left); $I\bar{4}2m^{4-6}$ (right). Red, aqua, white and yellow spheres represent Cu, Zn, Sn and S atoms, respectively. The 4d site (0,1/2,1/4) in the $I\bar{4}2m$ model is occupied by Cu and Zn atoms with site occupancy factors 0.5, shown as brown spheres.

3. 溶融法による結晶作製

原料には、Cu(5N)、In(5N)、S(6N)、Zn-Sn 合金を用いた。Zn-Sn 合金は、Zn(5N)、Sn(5N)をモル比 1:1 で真空封入(≦3.0×10⁻³Pa)し、溶融して作製した。

0.003mol の Cu_{2(2.00-x)}((2In)_y(ZnSn)_(1.00-y))_xS₄ 結晶が得られるように秤量した原料を Al₂O₃ タンマン管内に充填し、石英アンプル内に 3.0×10⁻³Pa 以下で真空封入して、 1250℃・10 時間の溶融を行った。

4. 試料の評価及び考察

試料は、粉末 X 線回折(リガク Miniflex)により評価した。作製した試料群(x = 1.05:Cu-5%poor)の粉末 X 線回折パターンを Fig.2 に示す。左側に全体図、右側に最も 強い 112 回折ピーク近傍の拡大図を示した。112 回折ピークのピーク位置と括弧内の 半値幅は1 ピークのガウシアン・フィッティングを適用して算出した。作製した試料 のすべてのパターンに、101,103,211 回折ピークが見られたことから、試料中に正方晶 系に結晶化している領域が存在していることが確認された。また、組成の変化に伴い、 回折ピークのシフトが観察された。

Fig.3 に充填組成による 112 回折ピークの半値幅の変化を示す(x = 1.05:Cu-5%poor)。 y ≤ 0.2 , y ≥ 0.6 での半値幅は、0.20~0.25°程度の値となっているが、0.3 $\leq y \leq 0.5$ の範囲では、半値幅が拡がっており、結晶性の低下が示唆される。また、Fig.2 において、0.2 $\leq y \leq 0.6$ の 112 回折ピークはガウス形ではなく、特に y = 0.5 の 112 回折ピークは明らかに 2 ピークである。

Fig.2 Powder X-ray diffraction patterns of $Cu_{1.90}((2In)_y(ZnSn)_{(1.00-y)})_{1.05}S_4$ crystals (*x* = 1.05:Cu-5% poor).

Fig.2 の粉末 X 線回折パターンに全回折パターン・フィッティングを施し格子定数 を求め、組成に対する変化を調べた。Fig.4 に充填組成による格子定数の変化のグラ フを示す(x = 1.05:Cu-5%poor)。 $0.0 \le y \le 0.4$ の試料については Fig.1 に示した I42m の モデルを、 $0.5 \le y \le 1.0$ の試料についてはカルコパイライト構造のモデルを用いてパタ ーン・フィッティングを行った。縦軸左は格子定数 a、縦軸右は格子定数 c を、横軸 は y の値を表している。図中の直線は、それぞれ $0.0 \le y \le 0.2$ 、 $0.6 \le y \le 1.0$ のデータ に対して最小二乗法により線形近似を施したものである。 $0.0 \le y \le 0.2$ 、 $0.6 \le y \le 1.0$ の 範囲内では、組成比 y に対してほぼ線形に変化しており、それぞれ、ケステライト・ タイプ構造、カルコパイライト構造で固溶して、Vegard 則に従っているものと考えら れる。一方、 $0.3 \le y \le 0.5$ の領域では、格子定数が異なる変化を示している。同じ領域 で 112 回折ピークの半値幅も広がっていることから、共晶となっているものと思われ る。同様の研究は Schorr らによって報告されており⁷⁰、miscibility gap として 0.40 $\le y$ ≤ 0.80 の領域が示されているが、今回、我々が得た結果とは明らかな差がある。In を Zn-Sn でどの程度置換可能かという観点から、より詳細な検討が必要であると考えて いる。

5. まとめ

溶融法により Cu_{1.90}((2In)_y(ZnSn)_(1.00-y))_{1.05}S₄結晶を作製し、粉末 X 線回折により評価 した。得られた試料の回折ピーク位置は、組成に応じて移動した。

 $0.0 \leq y \leq 0.2$ 及び $0.6 \leq y \leq 1.0$ の範囲における In と Zn-Sn の組成比と格子定数の関係 は、Vegard 則に従うと考えられる。一方、 $0.3 \leq y \leq 0.5$ の範囲では格子定数が他とは異 なる変化を示し、半値幅が増加したことから、共晶となっているものと思われる。

謝辞

本研究は、公益財団法人ユニオンツール育英奨学会の平成 20・22・23 年度研究助 成金を受けて行われました。

参考文献

- 1) 片桐裕則 応用物理 Vol.77, No.7, (2008.07.10) pp.831-835.
- 2) B. shin et al., Prog. Photovolt:Res. Appl. (2011) DOI:10.1002/pip.1174.
- 3) S. R. Hall et al., Can. Mineral. 16 (1978) pp.131-137.
- 4) P. Bonazzi et al., Can. Mineral. 41 (2003) pp.639-647.
- 5) S. Schorr et al., Eur. J. Mineral. 19 (2007) pp.65-73.
- 6) S. Schorr, Sol. Energy Mat. Sol. Cells 95 (2011) pp.1482-1488.
- 7) S. Schorr et al., Thin Solid Films 517 (2009) pp.2508-2510.