

量子化磁束動力学シミュレーション研究グループ 夏のセミナー

超伝導量子回路を用いた 量子情報処理

石川豊史 新原理コンピューティング研究センター 産業技術総合研究所

2022年9月10日(土)

超伝導量子回路について

超伝導量子回路

ともに挑む。つぎを創る

Charge qubit (NEC) Y. Nakamura et al., Nature 398, 786 (1999)

X-mon (UCSB, Google) R. Barends et al., PRL 111, 080502 (2013)

XY

control

(c'

200 µm

quantum bus

 \bigcirc

readout resonator

resonato

±

TiN transmon (IBM) J.B. Chang et al., Appl. Phys. Lett. 103, 012602 (2013)

Flux-driven JPA (provided by NEC) E. P. Menzal et al., PRL 109, 250502 (2012)

Flux qubit

Kerr parametric oscillator (Stanford type) Z. Wang et al., PRX 9, 021049 (2019)

国立研究開発法人產業技術総合研究所

超伝導量子回路の構成要素

<u>超伝導共振器</u>

超伝導量子ビット

$$H = \frac{Q^2}{2C} + \frac{\Phi^2}{2L} = \frac{1}{2}CV^2 + \frac{1}{2}LI^2$$

磁束

非線形調和振動子 ポテンシャル

磁束

超伝導量子ビット(超伝導人工原子)

TiN transmon (IBM)

J.B. Chang et al., Appl. Phys. Lett. 103, 012602 (2013)

X-mon (UCSB, Google)

R. Barends et al., PRL 111, 080502 (2013)

希釈冷凍機(簡易版)

気化熱を用いた冷却をヘリウム3で行う装置

・液体³Heと液体⁴Heが分離
 ・⁴He層に³Heが少し溶け込む時のエントロピー差を利用

希釈冷凍機の立ち上げ 熱雑音の少ない極低温環境を用意する 希釈冷凍機:ヘリウムの量子力学的な性質を利用した冷却装置

10 mK ~ 200 MHz, 50 mK ~ 1 GHz, 300 K ~ 6 THz

国立研究開発法人產業技術総合研究所

超伝導量子ビットの制御・読出し配線例

K. Inomata et al., Nat. Commun. (2016)

国立研究開発法人產業技術総合研究所

超伝導量子回路評価装置系の配線例

超伝導量子回路評価装置系の配線例

要請(仕様)

igh Electron Mobility Transistor (HEMT)アンプ で低ロスで量子ビットからの信号を導く • 4K~Base: ~0dB

RT~4 K: 減衰器1~2 dB → 中心導体の**熱接触**

サーキュレータ(アイソレータ)@4K, Base → HEMTアンプからのノイズ抑制

✓ 出力ポート用ケーブル

材質: NbTi (\$2.19) @ 4 K ~ Base 熱伝導率: 2.64 x 10⁻⁵ W⋅cm/K (@4 K) 減衰量: < 0.3 dB/m (@4 K)

4 К)

(難半田材料)

→ ケーブルとコネクタの機械的アセンブル

SCuNi (ϕ 2.19) @ 4 K ~ Base

熱伝導率: 2.18 x 10⁻⁴ W ⋅ cm/K (@4 K) 減衰量: < 1.8 dB/m (@4 K, 10 GHz)

超伝導量子ビットの量子操作

国立研究開発法人產業技術総合研究所

R.Barends, et al., Phys. Rev. Lett. 111, 080502 (2013)

国立研究開発法人產業技術総合研究所

R.Barends, et al., Phys. Rev. Lett. 111, 080502 (2013)

国立研究開発法人產業技術総合研究所

R.Barends, et al., Phys. Rev. Lett. **111**, 080502 (2013)

Jaynes-Cummings ハミルトニアン

国立研究開発法人產業技術総合研究所

共振器量子電磁気学 (Cavity QED)

マイクロ波共振器と原子を用い た共振器電磁気学(**Cavity QED**)

Review paper: J. M. Raimond et al., Rev. Mod. Phys. **73**, 565 (2001)

http://www.nobelprize.org/nobel_prizes/physics/laur eates/2012/popular-physicsprize2012.pdf

国立研究開発法人産業技術総合研究所

A. Blais et al., Rev. Mod. Phys. 93, 025005 (2021)

回路量子電磁気学の利点

Nature **451**, 664 (2008) Annalen der Physik, Vol. 16,

pages 767–779, October 2007

$$\begin{aligned} \mathbf{JC} \land \mathbf{\xi} \, \boldsymbol{\nu} \, \mathbf{h} &= \mathbf{P} \, \boldsymbol{\nu} \, \mathbf{0} \, \mathbf{0} \, \mathbf{1} \, \mathbf{d} \, \mathbf{\dot{e}} \, \mathbf{d} \, \mathbf{\dot{e}} \, \mathbf{d} \, \mathbf{\dot{e}} \, \mathbf{d} \, \mathbf{\dot{e}} \, \mathbf{\dot{e}}$$

国立研究開発法人 産業技術総合研究所

共鳴⊿=0のJCハミルトニアン(1) ^{企産総研}

http://quantumoptics.c altech.edu/index.html

Nature 416, 238 (2002)

- 原子のエネルギー準位が2つに分裂=
 ラビ分裂
- 初め電磁場が真空状態(n=0)でも分裂 = 真空ラビ分裂

、2つに分刻 - 0.0

Vacuum Rabi splitting

R. J. Thompson et al., PRL 68, 1132 (1992)

国立研究開発法人產業技術総合研究所

共鳴⊿=0のJCハミルトニアン(2)

ともに挑む。つぎを創る

国立研究開発法人產業技術総合研究所

離調の大きな極限でのJCハミルトニアン

Jaynes-Cummings ハミルトニアン $\hat{\mathcal{H}} = -\frac{\hbar\omega_a}{2}\hat{Z} + \hbar\omega_r \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right) + \hbar g \left(\hat{\sigma}_+\hat{a} + \hat{a}^{\dagger}\hat{\sigma}_-\right)$ $\Delta >> g \qquad \sin \theta_n \simeq 1, \quad \cos \theta_n \simeq \frac{g}{\Lambda}$ $E_{\pm,n} = \left(n + \frac{1}{2}\right)\hbar\omega_r \pm \frac{h}{2}\sqrt{4g^2(n+1) + \Delta^2}$ $|E_+,n\rangle \simeq |e,n\rangle + \frac{g}{\Lambda} |g,n+1\rangle$ $\simeq \left(n+\frac{1}{2}\right)\hbar\omega_r \pm \frac{\hbar\Delta}{2} \pm \hbar \frac{g^2}{\Delta}(n+1)$ $|E_{-},n\rangle = \frac{g}{\Lambda}|e,n\rangle - |g,n+1\rangle$ $= \pm \frac{\hbar\omega_a}{2} + \hbar\omega_r \left(n + \frac{1\pm 1}{2}\right) \pm \hbar \frac{g^2}{\Lambda} \left(n+1\right)$ $\hat{\mathcal{H}} = \sum E_{+,n} |E_{+}, n\rangle \langle E_{+}, n| + E_{-,n} |E_{-}, n\rangle \langle E_{-}, n|$ エネルギー原点の 平行移動なので無視 $\simeq -\frac{\hbar\omega_a}{2}\hat{Z} + \hbar\omega_r\hat{a}^{\dagger}\hat{a} - \hbar\frac{g^2}{\Delta}\hat{a}^{\dagger}\hat{a}\hat{Z} - \frac{\hbar g^2}{2\Delta}\hat{Z} + \frac{\hbar g^2}{2\Delta}\hat{I}$ $\hat{\mathcal{H}} = -\frac{\hbar\omega_a}{2}\hat{Z} + \hbar\omega_r\hat{a}^{\dagger}\hat{a} - \hbar\frac{g^2}{\Delta}\left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right)\hat{Z}$

共振器中の光子数の検出

光子数によって量子ビット の共鳴エネルギーが変わる

D. I. Schuster, et al., Nature, 445, 515, 2007, Yale

非古典的な光子分布の検出

PHYSICAL REVIEW LETTERS

week ending 14 JULY 2017

Nonclassical Photon Number Distribution in a Superconducting Cavity under a Squeezed Drive

S. Kono,¹ Y. Masuyama,¹ T. Ishikawa,¹ Y. Tabuchi,¹ R. Yamazaki,¹ K. Usami,¹ K. Koshino,² and Y. Nakamura^{1,3} ¹Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan ²College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan ³Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan (Received 13 February 2017; published 13 July 2017)

S. Kono, et al., PRL 119, 203602 (2017)

A. Blais et al., PRA 69, 062320 (2004)

国立研究開発法人産業技術総合研究所

2量子ビット間の相互作用

国立研究開発法人 産業技術総合研究所

J. Majer, et al., Nature 449, 443 (2007) Yale

超伝導量子ビット コヒーレンスの改善

振器の品質評価が重要視されるきっかけ

Binomial encoding (3D) Fluxonium (3D) Fock (3D

Gatemon

6

Gatemon

(graphene)

year

参考:3D共振器と超伝導ビット

C. R. H. McRae et al., Rev. Sci. Instrum. **91**, 091101 (2020)

国立研究開発法人産業技術総合研究所

<u>超伝導共振器のエネルギー損失源</u>

1. TLS (Two-level system)

- 極低温環境
- 共振器中の光子が少ない時
- 誘電体基板や金属の成膜品質、
 界面などに強く依存

<u>2. 準粒子 (Quasi particle)</u>

- 超伝導体の性質(エネルギーギャップ)との関係
- 熱やstray IR fieldなどによる励起
- マイクロ波パワーを強く入れすぎた場合

<u>3. 磁気渦</u>

- vortexが超伝導体にトラップ
- <u>4. 放射損</u>
- 自由空間に電磁場が放射される
- ・ 周波数、サンプルデザイン、パッケージに依在
- 5. Parasitic modes
- 低いQ値のモードと結合して起こる損失
- Slotline modes, box modes, chip modesなど
- 高い周波数ほど不要なモードが生成されやすい

C. Müller, et al., Rep. Prog. Phys. 82 124501 (2019)

超伝導共振器評価の意義

- 最も基本となる量子回路
 - +ジョセフソン接合で非線形共振器
 - 非線形共振器→量子ビット、アンプなど
- •極低温、低パワー極限ではTLSが支配的
 - デバイス品質に依存
 - 超伝導体成膜、誘電基板、基板と金属の界面
- ・共振器Q値はデバイス品質だけではなく、測
 定環境にも強く影響される
 - 磁気シールド、サンプルパッケージなど
- Q値はデバイス作製および測定環境を 総合的に評価するバロメーター

共振器評価の例

A. Megrant et al., APL 100, 113510 (2012)

M. Virginia P. Aloté et al., PRX QUANTUM **3**, 020312 (2022)

超伝導量子ビットの緩和時間

Jay Gambetta (IBM Research) 2021年5月20日のTwitterより

C. Wang et al., nqj quantum information 8, 3 (2022)

超伝導量子コンピューターの課題

国立研究開発法人產業技術総合研究所

固体量子ビットの問題意識(~2014年頃まで)

1~2量子ビット 初期化 読み出し 操作

Fidelities:

1-qubit gate 99.92%

2-qubit gate 99.4%

Readout 99.8% in 140 ns

5-qubit GHZ state 87%

量子エラー訂正に向けて

State-of-the-art circuits

R. Barends et al., Nature 508, 500 (2014) (UCSB)

拡張性

量子超越性 --- Quantum Supremacy 初期化 読み出し 操作 拡張性 2015年 10量子ビット 2019年 53量子ビット

J.Kelly, et al., Nature **519**, 66–69 (2015), Google F. Arute, et al., Nature **574**, 505-510 (2019), Google

国立研究開発法人産業技術総合研究所

固体量子ビットの問題意識(2020~?)

王

東大中村研 田渕 講演動画より <u>https://www.youtube.com/watch?time_continue=4&v=5oqsgBViCqM&feature=emb_logo</u>

		Input lines		Output lines		Passive heat load		Active heat load	
		4K - mK	300 K - 4K	4 K - mK	300 K - 4 K	mK	4 K	mK	4 K
	50 qubits	1 - 200 dc 150 10 GHz	1- 200 dc 150 10 GHz	1-200 dc 50 10 GHz	1-200 dc 50 10 GHz	500 nW	200 mW	1 - 5 µW	1 - 2 W
	100 qubits	2 - 500 dc 200 10 GHz	2 - 500 dc 200 10 GHz	2-500 dc 100 10 GHz	2-500 dc 100 10 GHz	750 nW	300 mW	1 - 5 µW	2 - 3 W
	200 qubits	2 - 1000 dc 200 10 GHz	2- 1000 dc 200 10 GHz	2-1000 dc 20 10 GHz	2-1000 dc 20 10 GHz	550 nW	200 mW	1 - 5 µW	5 W
-	500 qubits 1000 qubits	Brute force approach, relaibility and cost limit CryoCMOS, MUX tech.				Fridge limit			

では、どうするのか?

<u>田渕案(デジタル計算機の類推から)</u>

東大中村研 田渕 講演動画より <u>https://www.youtube.com/watch?time_continue=4&v=5oqsgBViCqM&feature=emb_logo</u>

こうするのが正解なのかは現時点ではわからないが・・・

- ・ 量子操作・検出の原理 --- もっと拡張性の優れたやり方はないのか
 - 制御方式 --- 時間多重、周波数多重、新奇方式?
 - 量子コンポーネント ---- 増幅器、フィルター、ルーター、スイッチなど
 - 量子変換器 --- トランスデューサー、シリパラ変換器?
 - 量子ネットワーク --- 量子チップ間通信
- 周辺制御機器 --- しばらくはBrute Force方式で対応
 - クライオCMOS、SFQ回路
 - 拡張性のある制御システム (アルゴリズム)
- 配線、実装方式
 - 三次元実装
 - 配線のバンドル化 --- DC ライン, 制御用ライン、検出用のライン

国立研究開発法人産業技術総合研究所