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1. Introduction

Importance of color is increasing in image anal-
ysis and classification. Actually this is natural,
because almost all visible objects are color objects.
Thus combining spatial and spectral information
more human perception kind of pattern recogni-
tion systems may be designed.

We know that there are three types of cones
in the human retina. These cone groups have
peak absorptions in the red, green and blue re-
gions of visible spectrum, the absorption spectra
of these receptors overlap considerably, and all
spectra are essentially between 400 and 700 nm.
However, it is important to note that the whole
human visual process, even in the retina level
is not well understood.

Much earlier than the evidence of the existence
of three cone sensors was confirmed, the classical
trichromatic model of human color vision was pro-
posed. Nowadays the basic trichromatic way to
determine numerical values for colors is using the
CIE (Comission Internationale I’Eclairage) tristim-
ulus values defined as

X Z(A)
Y |=\c(0)S()| 7(2) |d 2
Z Z(2)

where S(1) is the spectral power distribution of
the illuminator, (1) is the object spectrum, and
Z(A), 7(A), and Z(1) are the color matching func-
tions of the CIE standard observer. The color
matching functions correlate with the spectral sen-
sitivity curves of cones. The constant %4 is de-

fined by kzloO/SSu)g(x)dz, and A is wave-

length.

The wellknown CIE zyY-color space is deter-
mined from tristimulus values using the defini-
tions =X/ X+Y+Z) and y=Y/(X+Y+2Z). A
large number of other color coordinate systems
have been published but they are generally based
on some mathematical transformation of the above
mentioned tristimulus values.!”® Furthermore, a
typical colorimeter, color films and color TV are
based on this trichromatic principle. Trichromatic
equipments form the simplest group of devices
also for color recognition purposes.

In this paper we concentrate mainly to color
recognition systems which are independent on tri-
chromatic assumption. We do not concern the
human visual system nor the trichromatic color
measuring. Color recognition mainly from optical
pattern recognition point of view will be the
subject of the following few pages.

Matched filtering in the Fourier plane of a
lens is well-known optical measuring technique
which has mainly been used in coherent optical
pattern and character recognition. These methods
have recently been expanded to spectral dimen-
sion, too. They are shortly described in this paper.
Optical incoherent pattern recognition only in the
spectral domain will be the subject of the third
chapter. Next one method of statistical pattern
recognition (Subspace Method) and its optical im-
plementations are represented. This method is
especially suitable for spectral type of informa-
tion, and thus for color recognition and classifica-
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tion. It gives the necessary data to design spatial
filters for optical pattern recognition in spectral
domain. Finally we represent possibilities to com-
press the measured spectral data in multispectral
imaging by the way, that accurate recovering of
the original data becomes possible for later recogni-
tion purposes.

2. Matched Filtering and Optical
Correlation

Optical pattern recognition is often basing on
correlation of an input and reference signal or
two input signals. The most widely used optical
correlator is the matched spatial filtering system
(van der Lugt, 1964), which is schematically re-
presented in Fig. 1. The matched spatial filter is
constructed as follows. The reference transparency
is positioned at the input plane of the Fourier
transform lens L1. The interference pattern of
the Fourier transform of the reference image and
a plane reference wave is recorded to a film (ref-
erence wave is not seen in Fig. 1).

After development, the matched spatial filter is
repositioned at the Fourier plane, and an input
image transparency is placed in the input plane.
Using a second Fourier transform lens L2, the
correlation signal of the input pattern and the
reference pattern may be obtained in the output
plane.

For details of the above described frequency
plane correlator and 12 other correlator architec-
tures see Casasent’s article in Ref. 7). These and
the majority of all other correlation systems are
based on use of coherent light and recognition of
spatial similarities between an input and reference
pattern. They operate only in a monochromatic
mode. However, there exists investigations on poly-
chromatic and noncoherent correlators able to ma-
nipulate spectral information (color), too. Some
of the most important are briefly reviewed in
the following.

Case® proposed a wavelength-multiplexed
matched spatial filter for color-coded pattern recog-
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Fig. 1 Optical system for matched spatial filter-
ing.

nition. The idea is to record several spatial filters
to a same photographic plate using different co-
herent wavelengths for each reference patterns.
Placing this filter to a coherent optical correlator
allows a way to simultaneous recognition of sev-
eral different objects. In principle, a large number
of matched spatial filters can be superimposed
onto a same photographic plate, and a white
light illumination could be used in the recogni-
tion phase. The wavelength-multiplexed spatial
filters are more difficult to produce than single
exposure filters, but they do not require sequential
accurate positioning as a series of usual matched
filters.

Yu et al.” proposed a spatial encoding tech-
nique, where a spatially encoded black and white
transparency contains the three primary color in-
formation. That is, three different complex spatial
filters are spatially multiplexed to a monochromatic
film. The three primary color filters must also
be used in front of the corresponding complex
filters to avoid color cross talk.

Recently Yu!® introduced an interesting matched
filtering technique for a polychromatic coherent
optical correlator. A diffraction grating is placed
in the input plane of the basic optical system in
Fig. 1, and the input transparency is inserted at
the front of the grating. Three collinear coherent
sources (red, green and blue) form the polychro-
matic light source. Using a proper diffraction
grating it is possible to spatially separate the
three color Fourier patterns in the Fourier plane.
Several spatial filters for various color images can
be sequentially exposed to the same photographic
plate by rotating the diffraction grating in the
input plane. Compared to wavelength-multiplex-
ing® this spatial multiplexing leads to higher
diffraction efficiency and avoids color cross talk.

One drawback of the above mentioned correla-
tion techniques is that the out-of-plane and in-
plane alignment errors of the matched spatial
filters must be very small. Mu et al.'® proposed
a Fresnel-holographic filter method, where the out-
of plane alignment error can be several millime-
ters, and the correlator is independent on the in-
plane shift. Moreover, the diffraction efficiency
reaches the value 409, the system is lensless
and there are no color cross talk.

We may think that the above mentioned meth-
ods are only expansions of the coherent optical
matched filtering technique from the spatial
domain to the spectral-spatial domain. Incoherent
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‘white light illumination has not actually been
.applied, although it is in principle possible in some
systems. Futhermore, in all experiments the color
-of the samples has been completely different. So,
the color discrimination accuracy of these systems
‘has not yet been investigated.

An interesting trichromatic incoherent optical
.correlator technique was introduced recently.'® A
‘statistical pattern recognition algorithm was applied
‘to each three primary colors sequentially using a
monochromatic CRT as a light source, and par-
.allely using a color TV monitor as a light source.
Design procedures for optical recognition filters
were also given. The authors showed clearly that
‘the power of their classification algorithm increases
'remarkable when spectral-spatial filters were used
instead of spatial filters. This is a good example
-on the importance of spectral information in image
.analysis.

3. Optical Pattern Recognition in
Spectral Region

Spatial filtering and optical processing are still
‘possible, although broad band white light sources
.are used. Then the filters are not complex filters
.as in coherent optical processing but simply absorp-
:tion masks. That is, the dispersed input radiation
is transmitted selectively through absorbing filters
‘before detection. This principle actually forms the
basis for dispersive correlation spectroscopy.'®:*

This same filtering idea may be applied to color
:spectra, too. Caulfield and Mueller'® used a grat-
ing to form spatial spectral distributions of the
‘light signal under investigation. The spectra were
‘then filtered by passing them through a mask
.and the throughoutput was focused by a lens
for detection. Using linear discriminants the au-
‘thors were able to separate three Kodak filters
from each other, although these filters (47, 47A,
48) have almost the same color (blue). Designing
.discriminant filters, interference filters may also
be used instead of absorption masks.!®

Many mathematical methods familiar in statis-
‘tical pattern recognition can be applied in filter
-design for incoherent white light optical processing.
‘One of them, and its optical implementations are
-described more detailed in the following. We will
show how to design optical recognition filters
-using the Subspace Method,'”” and give some
-experimental evidence of the power of the algo-
irithm in noncoherent optical pattern recognition
:and classification.

4. Subspace Formalism

Suppose for a moment that we have the fol-
lowing color recognition problem. We have two
sample classes, both of which are known to con-
tain many samples but the color-differences be-
tween the samples are small. However, we know
that each of the samples belong to one of the
two classes. Futhermore, we have a third sample
class, where the classification of each sample is
unknown, and to be determined. These unknown
samples may belong to one of the two known
classes, or then to some other class. This is

‘a typical color recognition problem, where the

subspace methods may be applied.

Since the subspace formalism in statistical pat-
tern recognition is reviewed in detail elsewhere,’”’
only the most central notations are given here.

Each of the observed reflectance, transmittance
or radiance spectra (the color signal) is recorded
as a set of n wavelengths A1, A2, +**, .. Thus a
measured spectrum 7(A) may be interpreted as a
vector

t=[z(41), ©(2), *+, T(Ax)]" (1)
where T denotes the vector transpose. T is a
vector in n-dimensional pattern space R”. For
instance sampling a spectrum at 5 nm intervals
from 400 to 700 nm produces a 61 dimensional
vector.

According to the subspace formalism we try to
find for each class a much lower dimensional
subspace as the dimension of the original pattern
space. A set of linearly independent vectors {vi,
v, *++, 3}, where vi=[vi(A1), --*, vi(Ax)]%, spans
a p-dimensional subspace

?
L=L{wv, va, -, vp) z{xlxz _glafvi} (2)

where a: are scalars.

Assume we have K classes o?, :++, ¥, Our
mathematical model for each class is a subspace.
These subspaces, L, .-, L®>, have the dimen-
sions pW, .-, p® Now, any vector T has a
projection

?
/= igl(z'Tvi)vi (3)
to a p-dimensional subspace L. This equation is
a linear combination of the basis vectors, vector
vr being weighted by the inner product between
T and ve. For some parallel optical purposes Eq.
(3) may be rewritten as

/= ‘il ('U,"(JiT)‘C:PT ( 4 )
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where P is the projection matrix on L. The
distance between L and ¢ is defined by

oz, L)= {Iltllz—él(wf)z} e (5)

as usual Euclidean distance. Calculating the dis-

tance of ¢ from all subspaces, ¢ is classified to

the class where the corresponding subspace dis-

tance is shortest. Thus the classification rule is
if 6(z, L?)<é(z, L) for all j#i (6)
then 7 belongs to the class ‘"

Once the basis vectors of each subspace are
known, we only need to measure the inner prod-
ucts between a spectum and the basis vectors.
The basis vectors are n-component vectors, and
they may be transformed to optical spatial filters
for example in terms of density variations.

There are many methods to construct the sub-
spaces,!” and the performance of the formalism
can be improved by learning.!® The learning
subspace method is basing on associative mappings
introduced by Kohonen,'® and the idea is a deci-
sion-directed rotation of the subspaces. This LSM
algorithm has been further developed into the
average learning subspace method (ALSM).2®

5. Optical Subspace Classifiers

The above described method applied to color
classification offers remarkable simplifications for
spectum measurement because absolute spectra are
not needed. The spectral distribution of the mea-
suring system can be directly used without taking
into account the spectral distribution of the illu-
minator nor the detector.

The learning subspace methods were used in
Ref. 21) to classify white color samples. The sam-
ples were indistinguishable by usual chromaticity
measurement and almost indistinguishable by visual
inspection. Using only three basis vectors for
each class subspaces, all fifty-four spectra were
correctly classified with aid of the ALSM algo-
rithm.?® Other classification and clustering experi-
ments of color samples are given in Refs. 22-24).

Figure 2 shows a schematic drawing of a fast
acousto-optical subspace classifier.?> This equip-
ment offers a rapid way to measure both trans-
mission and reflection type of color spectra. Only
a single detector is needed, because during the
scanning each wavelength is diffracted to a fixed
angle. The diffraction efficiency may be controlled
by controlling the input electric power of the rf-
wave.

The system in Fig. 2 may be used both to the
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Fig. 2 An acousto-optical color recognition sys-
tem.2®

learning phase and the recognition phase of sub-
space classification. In the learning phase the
known samples, the training set, are measured
and the subsequent subspaces for each class are
determined using the computers belonging to the
equipment. Then the basis vectors of the sub-
spaces are stored to the microcomputers memory.
For instance, if four three-dimensional classes are
used, twelve basis vectors must be stored. In the
recognition phase Eq.(3) is used to determine
the projections of a measured spectra to each sub-
space and finally the measured sample is classified
using a classification rule as Eq. (6). All com-
putations are so simple, that the recognition phase
is the faster, the faster is the spectrum measure-
ment. The calculations of the recognition phase
may also be performed during the scanning by
adjusting the diffraction efficiency of the grating
according to the basis spectra information.

Another parallel optical subspace computer is
shown in Fig. 3. The object light is dispersed
using a grating and a sylindrical lens. The spec-
trum is manipulated in the filter plane by a spa-
tial filter array and then focused to detectors by
another cylindrical lens. In the learning phase a
row detector, for example CCD, is placed to the
filter plane and the basis for the subspaces are
determined. Then the basis vectors are coded to
transmittance variations on a film, and the filter
is placed to the filter plane for color recognition
and classification. Using a 2 D-spatial light mod-
ulator in the filter plane, both the learning phase
and filter coding may be done quickly.

Similarly as in Ref. 15) the system in Fig. 3
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Fig. 3 A parallel optical color recognition sys-
tem.

is using a white light source and operating only in
the spectral domain.

6. Spectral Representation of Colors

For general purpose color recognition trichro-
matic measuring systems are generally used.
However, in machine vision it is unnecessary to
restrict to trichromatic systems if we are able to
compress the spectral data by the way that pre-
serves most of the spectral information.

Typical color spectra of natural samples have
a smooth shape instead of consisting of a set of
narrow band peaks. This means that the spectra
are strongly correlated, and may consequently be
represented as a linear combination of few char-
acteristic spectra (also called as principal spectra,
basis spectra, eigenspectra and component spectra).
Principal component analysis (PCA) is one of the
most common tools to analyse spectral information.
PCA has been used to show, that three charac-
teristic spectra are enough to represent day-
light,?:?” and depending on the accuracy require-
ments, 5-8 characteristic spectra lead to essentially
perfect recover of surface reflectances.?®2%

To the author’s knowledge the largest set of
surface spectral reflectances in the visible part
of the spectrum has been analysed in Ref.29). The
color data was collected measuring 1257 reflectance
spectra of the chips in the Munsell Book of
Color. The characteristic vector decomposition and
some reconstructions were given. The three most
significant characteristic spectra are shown in Fig.
4, too. The ability of these vectors to explain
overall variance of the data set is about 989%.
Using four characteristic vectors increases the in-
formation contents by 1 9%. Because the charac-
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Fig. 5 Reconstruction (dotted line) of a mea-
sured spectrum (solid line) using four character-
istic spectra of the 1257 surface reflectances.
Sampling interval was 5 nm.

teristic vectors are orthogonal, this means remark-
able data compression: All spectra may be repre-
sented in a four-dimensional subspace. Thus using
Eq.(3), measuring only four inner products
tTv; give possibility to reconstruct the original
spectrum. For object colors four-dimensional rep-
resentation is generally sufficient, although some-
times higher dimensional subspaces are needed,
too. An example of the reconstruction power of
the Munsell basis is shown in Fig. 5.

The Munsell basis is also capable to reconstruct
natural colors, although a bit higher dimemsional
subspaces are needed.’®> Moreover applied to mul-
tispectral imaging, it is possible to find such three
component representation (same memory require-
ments as RGB image has), that the original color
spectra can be reconstructed with good accuracy
for each image pixel.*”

7. Conclusions

The traditional coherent optical correlators with
matched filtering technique have recently been
expanded to spectral-spatial domain, too. However,
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they are still basing on use of laser sources,
even though there are growing interest in incoher-
ent optical processing. Color discrimination accu-
racy of the spectral-spatial correlators has not yet
been investigated. On the other hand spatial fil-
tering technique for incoherent spectral pattern
recognition has been applied more than 20 years
but systematic methods of filter design have not
been studied until recently.

Digital image processing and pattern recognition
offers efficient mathematical methods, which may
often be realised optically, too. One method, dis-
cussed in this paper, is The Learning Subspace
Method of classification. It has been shown by
unsupervised learning experiments that this model
will adapt itself to the structure of the color
space. Furthermore, using a standard analog-opti-
cal vector-matrix multiplication scheme, optical
realisations for many color recognition purposes
may be constructed. Finally, using a well de-
signed single subspace, color recognition possibilities
of machine vision can be improved and expanded,
because instead of a standard trichromatic color
representation, whole color spectra can be connected
to each image pixel without significantly increasing
the computer storage requirements.
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