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We have developed a new optical associative memory system based on the symmetric three-
layered neural network model. It is optically implemented using scattered light holograms and
an LCTV spatial light modulator. In the experiment and the simulation, four Korean characters
are used as memory patterns. The simulation results are compared with those of the Hopfield
model, which show that more than 95% recognition probability is obtained for the inputs within

the error rate of 12%.

1. Introduction

Major properties of neural networks are massive
parallelism and information storage in distributed
manners by interconnection of processing units
called neurons. Optical information processing us-
ing holograms and optoelectric devices inherently
has such properties. Optical implementations of
Hopfield model? and various holographic associa-
tive memories (HAMs) have been developed by
many authors.?~'? Recently, Caulfield® suggested a
method of HAM storing several objects by multiple
exposures with a diffuser, and Song and Lee®’ op-
tically implemented and called it scattered light
holographic associative memory (SL-HAM). In an
associative memory such as the Hopfield model, the
interconnection matrix is obtained by adding all the
outer products of memory vectors (or patterns). It
has the advantage that implementation can be done
easily with vector-matrix multiplication devices or
holographic systems, but the limitations of the stor-
age capacity caused by the existence of spurious
states, unwanted local minima, and oscillating
states are drawbacks of Hopfield-type models. In or-
der to increase the storage capacity, some authors
have introduced and optically implemented quadrat-
ic associative memories (QAMs),!3"1% associative
memory utilizing nonlinearity in the correlation do-
main,'®'” and adaptive learning system which
learns dynamically the interconnection (synaptic)

weight through iterative adaptation.!®=2D In this
paper, we experimentally demonstrate and discuss
a new HAM based on the symmetric three-layered
network (STLN). We named it STLN because
the input and the output layer are the same as that
of two-layered associative memory except interme-
diate (middle) layer. It is implemented by SL-
HAM and a liquid-crystal television (LCTV).
Simulation results are compared with those of
the Hopfield model. Finally, we also discussed the
limitations of the storage capacity theoretically.

2. Principle of STLN

The principle of the symmetric three-layered (in-
put, intermediate, output) associative memory using
outer-product storage is summarized as follows.
U™ (m=1,2,-+, M) is mth memory vector with
N bit binary (1, 0) elements, and it corresponds to
the input and output units. G™ is associated with
U™, and it corresponds to the intermediate units.
W' is an interconnection matrix connecting input
units U™ to intermediate units G™ as shown in
Fig. 1, and it is obtained by outer-product opera-
tion between U™ and G™.

Wi= ”;g‘_:‘le(Um)T, ( 1 )

where the superscript 7" represents the transpose
operation to make a column vector into a low vec-
tor, and vice versa. W? is an interconnection ma-
trix connecting intermediate units G™ to output
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Fig. 1 Schematic diagram of symmetric three-
layered network model.

units U™ and it has a transpose relation with W'

M

Wa= > Um(Gm)T. (2)

m=1
Let G™ be an orthogonal vector having M, which
is the number of memory vectors, binary elements
as follows :

1, if j=m,

m
Gy = {0, otherwise, (8)
where G7 is jth element of mth vector G™. Then
the inner product between G™ and G™ can be writ-
ten as follows:

(G™TG" = Omn, (4)
where 6m. is a Kronecker delta. The retrieval of
stored information from input U* can be represent-
ed by matrix-vector multiplication with nonlinear
thresholding operation. When the interconnection
matrix W! is multiplied by the input U*, then G°*
is obtained as follows:

Gout= W1 Uk,
M
= X [GMU)IUA

m=

Il

M
ZIG"’[(U’”)TUk], (5)

"M
= Z_leoz(m, k),
[a(l, &), a(2, &), -+, a(M, k)],

where a(m, k) is an inner product between smth
memory vector U™ and the input vector U*. Be-
cause G™ has only one non-zero mth element, all
inner product values a(m, k) are spatially separated
in the intermediate layer. In two-layered network,
however, all inner product values are accumulated
in the output plane. If the input U* is the most
close to the sth memory vector U*, then G¥ is ob-
tained as intermediate output by winner-takes-all
(WTA) operation f[ +] which is a nonlinear
thresholding operation choosing only a maximum
value.

il

Gs= FIG™1,
:f[a(ls k)’ ) C}{(S, k)a R a(M: k)]: (6)
:(O, ey 1, e O)T

Finally, U* is obtained as an output when W? is
multiplied by G°.

FF FE22HF 1S (1993411 F)

Ueut=TW2Gs,
M
— Zl Um(Gm)TGs’

M
5 Ui, (7)

m=1
=U-.
Therefore, we obtain an output which is the same
or most similar to the input vector U*.

3. Principle of Outer-Product
Implementation

Consider, for simplicity, one-dimensional mem-
ory patterns with 5 bit binary elements:
b= (b, b2, b3, by, bs)T. (8)
Figure 2(a) shows the diagram of constructing
the interconnection matrix by the outer-product
storage holographically. The collimated beam from
the plane I and the coherent scattered beam from
the plane I with a diffuser illuminate the holo-
graphic plate, and they construct the interference
fringes. The element of the interconnection matrix
B:; represents the interference state, anb it is
given by
Bij=bb;. (9)
If b; (jth pixel of the pattern on Ii) and &: (ith
pixel of the pattern on I) are both transparent,
they make interference pattern (B:;=1). However,

It
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Fig. 2 Schematic diagram of (a) making intercon-
nection matrix holographically and (b) recogniz-
ing the input b
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if one of two pixels or both are opaque, then they
do not make interference pattern (B;;=0). The
first column of the matrix B: correspond to the
interference patterns between the beam from the
transparent pixel &' of I and all scattered beams
from &: (i=1,2,---,5) of I,. Even though B: is
overlapped on the same place of the hologram, they
arc distinguished by their different phase informa-
tions due to the different scattering angles of
beams from I,. Figure 2(b) shows the diagram
of reconstruction of the stored memory pattern by
illumination of the input &* on the hologram. The
ith component of output is the summation of dif-
fracting beams from the hologram to the ith posi-
tion, and it is proportional to &; which is the ith
component of the stored pattern.
beut= Z B b%,

i=

Blbk‘l‘szbk‘l'Bzabk‘l'Buibk'i'Bub (10)

b( z bitt)

i=1

If several memory patterns are stored by multiple
exposures, unwanted noise patterns due to the cross-
correlation also appeared at the output plane, then
threshold operation is needed to get a noiseless out-
put. This principle of SL-HAM can be applied
directly to the two-dimensional patterns.

4. Experiment and Simulation Results

In the experiment, we take up objects of 2-D
Korean characters (Hangul) as four memory pat-
terns. They are constructed with 25(5x5) binary
(transparent/opaque) pixels (2mmX2mm) as
shown in Fig. 3(a) and represented as vector
forms of M=4, N=25 by ordering the pixels in
a row:

=(0111000010011100100001111)7,

U?=(0110001100011001011010011)7, (1)

U*=(0111010001100011000101110)7,

U*=(1111100100010101000110001)7.

Ut U2 Ul Ut
GI GZ @3 Gt

(b)

Fig. 3 (a) Four memory patterns and
(b ) four orthogonal intermediate patterns.
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Fig. 4 Schematic diagram of making (a) the
first and (b) the second hologram.

We note that all memory vectors consisting of 25
elements with the same numbers of twelve 1’s and
thirteen 0’s. Four orthogonal intermediate patterns
associated with those memory patterns are shown
in Fig. 3(b), and they are written as follows:

G=(1000)",
G*=(0100)",
G3=(0010)", (12)
G*=(0001)".

The schematic diagram of making the first holo-
gram (Hi), corresponding to the interconnection
matrix Wiin Eq. (1), is shownin Fig. 4(a).
The interference fringes, formed by the collimated
beam passing through the pattern U! and the scat-
tered beam from the diffuser placed behind the pat-
tern G, constructs holographically the vector outer-
product between U* and G! on the recording medi-
um (Kodak HRP type 1A). The holographic re-
cording medium is exposed four times successively
to superimpose all interference fringes between U™
and G™ (m=1,2,3 and 4). Figure 4(b) repre-
sents the schematic diagram of making the second
hologram (H:) corresponding to the interconnection
matrix W2 in Eq. (2). The principle of con-
structing the outer-poduct holographically is the
same as that of Hi. Instead the patterns U™ and
G™ should be exchanged so that H. can have
transpose relation with Hi as shown in Eq. (1)
and Eq.(2). The diffuser is made of a flat optical
glass ground with silicon carbide powder of grain
size 80-100 gm.
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Fig. 5 Experimental setup of reconstruction process.
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Fig. 6 Experimental results of recognizing
(b) distorted (partial) patterns.

Figure 5 shows the optical system for recog-
nizing a partial or distorted input of the stored
memory pattern. The first order diffracted beam
from H; gives the intermediate pattern (before
threshold). A CCD (charge-coupled detector) cam-
era is used to detect this image. The nonlinear
threshold operation WTA is carried out by using
an electronic processor connected to the CCD
camera. The thresholded image, which is the
intermediate pattern (after threshold), is displayed
on the LCTV used as a 2-D spatial light modu-
lator (SLM). The first order diffracted beam from
Hs, placed behind the LCTV, gives the final
output that is one of four stored memory patterns,
and it is the closest to the input.

Figure 6(a) shows the experimental results.

the various inputs as (a) memory patterns and

Intermediate patterns (before and after threshold)
and output patterns are illustrated for the input
patterns. We know that all memory patterns are
stored stably in this system. Figure 6(b) shows
the considerable error-correction capability of recog-
nizing the partial inputs. To see the overall per-
formance of the STLN quantitatively, computer
simulations were carried out and the results were
compared with those of the Hopfield model.
Figure 7 represents the results of the simula-
tion. The recognition probability (or capability) is
defined as the number of correct recognition per to-
tal number of inputs. The simulations were repeat-
ed for 500 randomly generated inputs of each error
bits (Hamming distance), and the results are av-
eraged for all memory patterns. The results show
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Fig. 7 Results of computer simulation of the
symmetric three-layered network (STLN) and the
Hopfield model.

that more than 959% recognition probability is ob-
tained for STLN, but 54% is obtained for Hopfield
model within the Hamming distance 3 (12% error
rate in pattern). The storage capacity may be pro-
portional to the signal-to-noise ratio (SNR). The
interconnection matrix of the two-layered networks
including the Hopfield model is given by

M
B= 2 1b’”(b"‘)T. (13)

When B is multiplied by the input &%, the output
b°ut is obtained as follows :
b(\ut:Bbk,

M
— Z_:l bm(bm)']‘bk’ (14)

M
= Nob*+ Zk b™a(m, k),
m#

where N is the number of 1’s of the input #*, and
a(m, k) is the inner product between 4™ and b*.
The first term on the right-hand side of Eq.(14)
is the signal, and the other is the accumulated
noise. The required minimum SNR in order to
recognize the input is given by

[SNR]min: M NO
[ > b™a(m, k)]
m#*k max

__No
B(M—1)
=7
M-1
where 8 is the mean inner-product value given by
_ ¥ almn)
A=z, N(M-1)/2 (16)
Ny
=220 (17
=% )
In order to correctly recognize the input, [SNR Jmin
should be larger than unity:
M<yr+1. (18)
The mean inner-product value of four memory pat-
terns used in this paper is 8=5.7, No=12, and

1s5)

725(63)

7=2.1. Therefore it cannot satisfy the criterion
for memory storage capacity (Eq. (18)) in the two-
layered network. Because the signal and noises are
spatially separated in the intermediate plane of the
STLN (Eq.(5)), the storage capacity can be in-
creased up to the number of combination of choosing
Nooutof N: nChw,. It is about 5x10° for N=25
and No=12, theoretically. But practical capacity
also depends on the resolution limit and spatial
band-width product of holographic recording me-
dium. The first hologram is divided into 25(=N)
subholograms. Each of the subholograms has 4
(= M) interference patterns superimposed on it, so
that the total number of interference patterns, on
the whole area (2.5cmx2.5cm) of the recording
medium, is 100(= N X M), which is less than 2500
(=N?Xx M) of two-layer system, and far less than
the resolution element density of the hologram
recording medium.?> The second hologram is di-
vided into 4 subholograms. Each of four memory
patterns is separately stored on each of these sub-
holograms, so that only one pattern is obtained
without noise patterns at the output plane.

5. Conclusion

In conclusion, we have demonstrated optical sys-
tem and experimental results of holographic associ-
ative memory based on the symmetric three-layer-
ed network. The storage capacity and recognition
ability have improved when it is compared with
the conventional two-layered system and the Hop-
field model. This system can be used in the areas
of parallel image processing such as pattern recog-
nition and image error correction. Multilayer
adaptive learning may be implemented by replac-
ing the recording medium and electronic processing
of this system with nonlinear optical devices such
as photorefractive crystals and Fabry-Perot etalon.
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