1. はじめに
レーザー干涉計でガラス板の表面形状を測定する場合、ガラス板の表面と裏面からの反射光がある。従来の干涉計では、これらの反射光を参照光による異なる2つの干涉信号を識別できないため、表面と裏面の形状をそれぞれ求めることはできない。このように反射光の表面が存在する場合、各表面からの反射光を分離するために、反射光と参照光によるヘテロダイナム周波数を高い周波数にシフトさせることにより、不要な干涉信号と分離させる必要がある。このための方法として、参照光と物体光の光路差を大きくすることが考えられる。干涉計への入射光の相位分布が伝播とともに変化する場合、物体光と参照光の間に相位分布の差が生じ、表面形状を正確に求めることが困難となる。

そこで、本論文では、ヘテロダイナム変調に加えて、参照光を正弦波振動しているミラーで正弦波位相変調する方法を提案する。この方法をヘテロダイナム正弦波位相変調法と呼ぶ。ミラーの振動により簡単で得られる正弦波位相変調によって、ヘテロダイナム周波数を高い周波数に容易にシフトすることができる。まず、本方法の原理および複数の干渉信号の分離特性について述べる。次に、フィードバックの干渉計による円柱ガラスの表面形状の測定について述べ、数nmの精度で表面形状の測定を行うことを明らかにする。さらに、正弦波位相変調を用いずに、光路差を大きくとりヘテロダイナム変調だけを用いる方法と比較し、本方法の有効性を明らかにする。
2. ヘテロダイナイン正弦波位相変調干渉法

Fig. 1 にヘテロダイナイン正弦波位相変調 (HSPM) 干渉法の基本構成を示す。半導体レーダー (LD) の注入電流が \(i_0 \) のときの発振波長を \(\lambda_0 \) とする。注入電流の変化 \(\Delta i \) に対し、発振波長は

\[
\Delta \lambda = \beta \Delta i
\] なる。\(\beta \) は変調率であり、\(\Delta i = bt \) となる。ここで、\(b \) は注入電流の増加率であり変調係数と呼ぶ。干渉信号は \(A, B \) を定数として

\[
S(t) = A + B \cos(\omega_c t + a)
\] となる。ここで、\(\omega_c \) は周波数を、\(\omega_n \) は光路延長を、\(\Delta \lambda \) は変調率 \(\beta \) である。

\[
\omega_n = \frac{(2 \pi \beta L) I_b}{b}
\] である。\(\omega_n \) は変調波の周波数であり、\(\omega_c \) が変調係数 \(b \) に比例する。この周波数をヘテロダイナイン周波数と呼ぶ。位相 \(a \) は

\[
a = \frac{(2 \pi \lambda_0)}{L}
\] で表される。\(\lambda_0 \) は光源の波長である。干渉信号の直流分 \(A \) を無視し、信号振幅 \(B \) を 1 とする。さらに、ミラーを電圧素子 (PZT) で \(a \cos(\omega_c t + \theta) \) の正弦波振動させ、参照光を位相変調すると干渉信号は次式のようなになる。

\[
S(t) = \cos[a \cos(\omega_c t + \theta) + \omega_n t + a]
\] ただし、\(z = (4 \pi \lambda_0) a \) である。

\[
F(\omega) = \delta[\sin(\omega t + a)] \cos[z \cos(\omega c t + \theta)]
\] となる。ただし、\(\delta \) はトレシピール変換を、\(\cos \) はコンポリューションを意味する。

\[
\omega_c t + \theta
\] 以下の範囲では、\(F(\omega) \) は次式で与えられる。

\[
F(\omega) = \frac{1}{2j} \delta[\omega - (\omega_c - \omega_n)] \exp(-j\alpha + j\beta) f_1(z) - \frac{1}{2j} \delta[\omega - (\omega_c + \omega_n)] \exp(j\alpha + j\beta) f_1(z)
\] ただし、\(\delta \) はデルタ関数、\(f_1(z) \) は次式のペリッソ関数である。したがって、正弦波位相変調によって生じる周波数成分 \(\omega_c \) は周波数に \(\omega_n \) だけシフトすることになる。

\[
F(\omega_c - \omega_n) = \frac{1}{2} f_1(z) \exp\left[j\left(-a + \theta - \frac{\pi}{2}\right) \right]
\] となり、位相 \(a \) は次式で与えられる。

\[
a = -\tan^{-1}\left[\frac{\text{Re}[F(\omega_c - \omega_n)]}{\text{Im}[F(\omega_c - \omega_n)]} \right] + \theta + \frac{\pi}{2}
\] ただし、\(\text{Re}[y] \) と \(\text{Im}[y] \) はそれぞれ \(y \) の実数部、虚数部を意味する。同様に、\(\omega_c \) が高い周波数側にシフトした周波数成分は、

\[
F(\omega_c + \omega_n) = \frac{1}{2} f_1(z) \exp\left[j\left(a + \theta + \frac{\pi}{2}\right) \right]
\] となる。したがって

\[
a = -\tan^{-1}\left[\frac{\text{Re}[F(\omega_c + \omega_n)]}{\text{Im}[F(\omega_c + \omega_n)]} \right] - \theta + \frac{\pi}{2}
\] となる。

3. HSPM 干渉法の特性

3.1 複数の干渉信号の分離

Fig. 2 に示す干渉計でヘテロダイナイン正弦波位相変調干渉法を用い、ガラス板の表裏面の形状を測定する。半導体レーザーには時間とともに増加する注電流 \(i_c \) を加える。干渉信号の数を PZT により周波数 \(f_c \) で正弦波振動しており、裏面からの反射光を参照光として用いられる。ガラス板はエッジ基板であり、表面からの反射光を

![Fig. 1. Basic construction of HSPM interferometer.](image1)

![Fig. 2. Fizeau-type HSPM interferometer for measurement of two surface profiles.](image2)
4. 円柱ガラスの表裏面の形状測定

4.1 検定方法

Fig. 2 に示す干渉計で円柱ガラスの表裏面の形状測定を行った。光源には出力 10 mW の半導体レーザーを用いた。LD からのレーザー光は、凸レンズで平行光とし、厚さ 5 mm の振動ガラス板を透過させ、測定物体に照射した。測定物体からの反射光をピームスプリッターで 90 度回転させ、凸レンズによって二次元 CCD イメージセンサーに集光した。測定物体として直径 20 mm、高さ 20 mm の円柱ガラスを使用した。機械的な振動を受けにくいフィッター型の干渉計であり、L_0 の長さをなるべく短くし、L_0 ≈ 9 mm、L_0 ≈ 29 mm とした。振動ガラス板によって参照光を f_0 = 120 Hz で正弦波位相変調した。さらに、LD にランプ波の変調電流を加えてヘテロダイナム周波数を得た。干渉信号は二次元 CCD イメージセンサーにより 15×15 の測定点で検出した。各測定点の干渉信号は A/D コンバーターにより f_0 = 8 f_0 の周波数でサンプリングされ、信号の長さは T = 32 μs = 533 ms であった。測定物体の表面と裏面の干渉信号を分離するように注入電流を大きく変化させるため、レーザー光の光強度変化が無視できない。そこで、光強度変化をあらかじめ測定しておく、検出された干渉信号の振幅を光強度変化の比で割ることにより補正を行った。計算機内に取り込まれた干渉信号は高速フーリエ変換される。ヘテロダイナム周波数 f_0 の 1 周期の 2^n 倍 (n は整数) が信号の長さ T に等しくない場合、高速フーリエ変換によって得られるヘテロダイナム周波数成分は sinc 関数による広がりをもつ。したがって、f_0±f_0 の周りの最も値の大きな周波数成分を用い、式 (10), (12) により位相 α を求めた。このとき、円柱ガラスの屈折率 n が一定であるとすれば、ガラス面の表面の形状 r_n、裏面の形状 r_n は次式で与えられる。

\[r_n = \frac{\lambda_n}{4\pi} a_n \]

\[r_n = \frac{\lambda_n}{4\pi} \left(\frac{1 - 1}{n} a_n + \frac{1}{n} a_n \right) \]

4.2 HSPM 干渉計による測定結果

検出した干渉信号 S(t) を Fig. 3 に示す。ヘテロダイナム変調で生じる光強度の増加により干渉信号の振幅が時間とともに大きくなっている。干渉信号の振幅を一定にする補正を行った後の干渉信号のフーリエ変換の振幅分布を Fig. 4 に示す。測定物体 A、B 面に対する干渉信号 S_A(t) と S_B(t) のヘテロダイナム周波数は、それぞれ f_0 ≈ 12 Hz、f_0 ≈ 39 Hz であること、およびこれらの周波
図3. HSPM干渉信号$S(t)$。

図4. 四元方程式の変換周波数の整数倍の位置に周波数シフトされていることがわかる。不要な干渉信号$S_{0}(t)$のヘテロダイナム周波数は$f_{0}-f_{0}=27$ Hzであり、この周波数成分は大きな振幅をもっている。不要な干渉信号$S_{0}(t)$の周波数成分以外にも、不要なさらに低い周波数成分があり、これらの影響を小さくするために、干渉信号$S(t)$と$S_{0}(t)$に対しては、αを中心とする周波数成分を用いた。f_{0}、f_{0}^{\prime}、L_{0}、L_{0}の値からΔfは約0.15 nmとなる。図4に示すように、表面Aの干渉信号$S_{1}(t)$による$f_{0}-f_{0}^{\prime}$および$f_{0}+f_{0}^{\prime}$の周波数成分で最大の振幅をもつa、bの周波数成分から位相α_{α}を求め、図5に示すように表面Aの表面形状(a)、(b)をそれぞれ得、表面形状(a)、(b)の標準偏差(rms)と最大最小値差(P-V)の平均値はそれぞれ約4.3 nm、26.1 nmであった。表面形状(a)、(b)の形状差のrmsは約0.2 nmであり、他の不要な周波数成分による位相α_{α}への影響がないことを示している。

次に表面Bの干渉信号$S_{2}(t)$による$f_{0}-f_{0}^{\prime}$および$f_{0}+f_{0}^{\prime}$の周波数成分で最大の振幅であるc、dの周波数成分から位相α_{β}を求め、図6に示すように表面Bの表面形状(a)、(b)をそれぞれ得、表面形状のrmsとP-Vの平均値はそれぞれ約8.3 nm、40.4 nmであり、表面Aよりも面粗さが大きくになっている。表面Aと表面Bの差のrmsは約0.6 nmであるが、各測定における表面形状の繰返し精度は5 nm程度であった。

4.3 ヘテロダイナム位相変調干渉計による測定結果との比較

光路差を大きくとり、ヘテロダイナム周波数それ自体を高くすることにより、他の不要な低い周波数成分と分離する方法について検討した。円柱ガラス表面から参照ガラスによる参照面までの距離L_{0}を60 mmとし、PZT
Fig. 7. Amplitude of Fourier transform of the HPM interference signal.

Fig. 8. Profile (a) of surface A obtained from the frequency component e, and profile (b) of surface B obtained from the frequency component f, respectively.

による正弦波位相変調を行わず、へテロダイナ干渉計で測定を行った。干渉信号のフーリエ変換の振幅分布をFig. 7に示す。へテロダイナ周波数ν_eは87 Hz, ν_fは113 Hzとなり、不要な干渉信号成分から分離されていることがわかる。へテロダイナ周波数成分の中で最大振幅であるe, f成分から、Fig. 8に示すような表面形状を得た。Fig. 5, 6のへテロダイナ正弦波位相変調干渉計による結果と比較すると、表裏面A, Bともrmsは2〜5 nm程度、P-Vは20 nm程度増加している。これは、干渉計への入射光の位相分布が伝搬とともに変化するために生じる物性光と参照光間の位相分布の差によるものである。この結果より、光路差を大きくとることによるへテロダイナ干渉計では正確な測定が困難であることがわかる。

5. おわりに

高さ20 mmの円柱ガラスの表面と裏面の形状測定を行うために半導体レーザーの注入電流をランプ波で変調し、かつ正弦波振動しているミラーを参照光と位相変調するへテロダイナ正弦波位相変調干渉計によるとの形で、及び大波長のミラーを参照光と位相変調するフィードバック型干渉計を構成した。円柱ガラスの表面および裏面からの反射光による干渉信号のへテロダイナ周波数は、それぞれ約10 Hz, 40 Hzであったが、正弦波位相変調によりこれからのへテロダイナ周波数を120 Hzだけ周波数シフトし、他の不要な干渉信号と完全に分離した。周波数シフトされたへテロダイナ周波数成分の位相項により、表面および裏面の形状を約5 nmの繰返し精度で求めることができた。参照光と物体光の光路差を大きくし、必要とする干渉信号のへテロダイナ周波数数値を高くすることにより、他の不要な干渉信号と分離することが可能であるが、この場合、干渉計への入射光の位相分布が伝搬とともに変化する影響を受け、正確な形状測定が行えないことを示した。へテロダイナ正弦波位相変調干渉計では、光路差を小さくすることができるため、その影響はほとんど現れなかった。

文献

25巻8号 (1996) 477 (37)