Toric-Wavefront Holographic Interferometry for Testing Concave Gratings: Error Analysis

Shushiro MOROZUMI

Department of Mechanical Systems Engineering, Faculty of Engineering, Shinshu University, 4-17-1, Wakasato, Nagano 380-8553

Error analysis is made of an interferometric system consisting of a test concave grating, a reference hologram, and its recording and their illuminating point sources. The interferometric system is considered in which grating and hologram, their point sources being fixed in erroneous positions, are aligned so that the test and reference wavefronts fit together. Analytical expressions are given for aberrations resulting from point source positioning errors and from grating and hologram misalignments, being represented by the wavefront fitting itself and by fitting errors. A numerical example of the interferometric system is shown, and influences are discussed which the system error aberration has on the precision of aberration measurement of the concave grating.

1. はじめに

これまでに，凹面格子の検査法として光波干渉を用いる方法がいくつか提案されているが，しかし，その感度精度または波面収差の定量測定に関する研究は少ない。位相増幅干渉法を用いる検査法は，収差補正型凹面格子の場合の干渉波面間の間隔が大きく縦間隔の細かい部分に生じ，縦測定精度の点で不利である。一方，トーリック波面ホログラフィック干渉法を用いる検査法は，光学系の光軸調整が少し面倒であるが，収差補正型凹面格子の場合でも被検波面と基準波面の形状はほとんど等しくできるから上記の欠点は除かれる。また，位相増幅干渉法では，凹面格子照明用の平面波面を得るために，比較的狭い高密度のミラーを用いる必要がある。これに対し，トーリック波面ホログラフィック干渉法では，基本的には凹面格子とホログラムの照明や記録には点光源からの球面波面だけを用いるので，ホログラムの他に上記のような高密度の光学部品を用いる必要がない点でも有利である。このトーリック波面ホログラフィック干渉法を用いて凹面格子の波面収差を定量的に測定評価するためには，さらに，この干渉法の誤差解析が必要である。

本研究では，直線部の収差補正型凹面格子を検査するための干渉光学系の誤差解析を行う。この光学系の配置は，従来型凹面格子を検査するための干渉光学系の場合と同じ精度で決定される。ここで，トーリック波面ホログラフィック干渉法の概要を述べる。Fig.1 は干渉光学系の配置を示す。被検凹面格子には点 A の光源が，またホログラムは点 Q_a の光源で照明され，ホログラムは点 Q_a と Q_b の光源で記録されたものとする。ここで，点 Q_i (i=1, 2, c) はすべてホログラムの中心 O_h から等しい距離にある。点 A の凹面格子に対する，また点 Q_i のホログラムに対する配置および凹面格子に対するホログラムの配置は，凹面格子から完全なものとしたとき，両者のトーリック回折波面の形状ができるだけよく一致するように決定されている。ただし，両波面の形状がわずかに異なっているため，両波面の間の収差が光学系に固有なものとして残る。このように光学要素が設計どおりに配置されているとき，凹面格子に最適のない場合の回折波面を Σ a，誤差のある場合のそれを Σ_a とし，ホログラムの回折波面を Σ_a，これと同じ光束の Σ_a から距離 O_aO だけ離れた波面を Σ_a とする。ここで，O は凹面格子の中心であ
Fig. 1. Interferometric system for testing a concave grating with a lens-less-Fourier-transform-type hologram. The test concave grating, the reference hologram, and their point sources are in a designed configuration.

2. 基本光学系と固有収差

凹面格子に座標系 $O-x_0 y_0$ を設け、格子中心 O に原点を、O での格子面の法線に沿って x 軸を、O での格子面の法線方向に垂直に y 軸を、平行に y 軸をとる (Fig. 2)。凹面格子の曲率半径を R, 切線方向は直線で、溝間隔は溝位置の座標 x の関数として次式で表されるものとする。

$$
\sigma = \frac{a_0}{\left(1 + 2b_0 R \xi^2 + \frac{3b_0^2 R^2 \xi^2}{2} + \frac{4b_0^3 R^3 \xi^3}{6}\right)}
$$

ここで、a_0 は格子定数で $x=0$ における溝間隔であり、b_0 は切線パラメーターである。

凹面格子の照明光源の波長を λ, 回折光の次数を m とすると、$\xi-x$ 面内の照明光源の位置 $A(\rho, \varphi, 0)$ の座標は次式で与えられる。

$$
\varphi = \angle AO\xi = \arcsin\left(\frac{m\lambda}{a_0}\right), \rho = AO = \frac{R}{\cos \varphi}
$$

凹面格子を点 A の光源で照明したときに生じる m 次回折波面を Σ_r とする。格子上の任意の点を $P(\xi, \eta, \zeta)$ と、この P に対応する Σ_r 上の点を $P(\xi, \eta, \zeta)$ とする。
座標 $z_0 = z + PP$ で表される。z_0 は、PP を P から z_0 にいたる直線の光路長と方向余弦を用いて近似的に与え、z とともに z と y のべき級数に展開することによって次式のように表される。

$$z_0(\xi, \eta) = \frac{1}{2} \left(\frac{\rho_n^2 + \rho_v^2}{\rho_n^2 + \rho_v^2} \right) + Dz_0(\xi, \eta) \quad (3)$$

ここで、$\rho_n = (\sin^2 \phi / \rho + 1/ \rho R - 2b_m \phi / \sigma_n R)^{-1}$, $\rho_v = R$ は、それぞれ、z_0 の水平および垂直方向の主曲率半径とされる。z_0 の主焦平面は $\xi - z$ および $\eta - z$ に一致する。

$$Dz_0(\xi, \eta) = \frac{1}{2} \left(\frac{\rho_n^2 + \rho_v^2}{\rho_n^2 + \rho_v^2} \right) \left(\frac{\partial \rho_n}{\partial \xi} + \frac{\partial \rho_v}{\partial \eta} \right)^2 + \frac{\partial \rho_n}{\partial \xi} + \frac{\partial \rho_v}{\partial \eta} \left(\frac{\partial \rho_n}{\partial \xi} + \frac{\partial \rho_v}{\partial \eta} \right) + \frac{\partial \rho_n}{\partial \eta} + \frac{\partial \rho_v}{\partial \xi}$$

係数 ξ_0 は式 (A1) で与えられる。

ホログラムには、座標系 O_{n-xyz} を設け、中心 O_n に原点を、O_n における法線に沿って z 軸を、ホログラム面に x と y 軸をとる (Fig. 2)。$x-z$ 面内の点 O_n と Q_n の記録光束および Q_n の照明光束の位置を、それぞれ、$(r_n, \theta_z, 0)$, $(r_n, \theta_z, 0)$ および $(r_n, \theta_z, 0)$ で表す。ここで、$O_nQ_n = r_n$, $\theta_z = \angle Q_nO_nz (i = 1, 2, 3)$, 3 つの光源の波長を λ、回折光の回数を 1 とすると、光源の位置は、適当な r_n の値に対し、次式の θ_z の値によって与えられる。

$$\theta_z = \arcsin \left[\frac{2}{3} \left(\frac{r_n^2 + r_n^2}{r_n^2 + r_n^2} \right) \xi_0 \right]$$

ここで、$r_n = \rho_n + r_n$ と r_n は、それぞれ、z_0 の水平および垂直方向の主曲率半径である、z_0 の主焦平面は $x-z$ と $y-z$ 面に一致する。

ここで、座標系 O_{n-xyz} に平行であり、z 軸上 $D = \rho_n + r_n$ に

注：θ_z の値は、文献 [3] の式 (17) において、$\sin^2 \phi / 2 \rho^2$ を ξ_0 に置き換えることによって得られる。
\[\rho_\eta = r_\rho + r_\xi \] だけ離れた点 \(O_0 \) を原点にとも座標系 \(O_0 - \xi \eta s_0 \) を考える。Fig. 2 では、簡単のため、\(O_0 - \xi \eta s_0 \) 系は \(O - \xi \eta s_0 \) 系に重ねて示されている。波面 \(\Sigma_{ac} \) と同じ光束をもつ、点 \(O_0 \) を通る波面を \(\Sigma_0 \) とし、これを \(O_0 - \xi \eta s_0 \) 系で表す。\(\Sigma_0 \) 上の任意の点を \(B_0(x, y, z_0) \) 、これに対応する \(\Sigma_{ac} \) 上の点を \(B(x, y, z) \) とする。\(\Sigma_0 \) は \(B_0 \) の座標 \(s_0 \) で表され、\(s_0 \) は、\(B_0 \) と \(B \) の座標間の関係（2点を通る光軸の方向余弦で結ばれる）から座標 \(\xi \) と \(\eta \) の関数として次のように与えられる。

\[
\xi(s_0, \eta) \approx \frac{1}{2} \left(\frac{\xi_0^2}{\rho_\xi} + \frac{\eta_0^2}{\rho_\eta} \right) + J_{\xi\eta}(s_0, \eta) \quad (6)
\]

ここで、\(\rho_\xi = D - r_\xi, \rho_\eta = D - r_\eta \)，\(J_{\xi\eta}(s_0, \eta) = H_{50} \xi_0^2 + (1/8\rho_\eta) (\xi_0^2 + \eta_0^2)^2 + H_{60} \xi_0^2 + H_{61} \xi_0^2 \eta_0^2 + H_{62} \xi_0^2 \eta_0^2 \) で、係数 \(H_i \) は付録式(A2)で与えられる。式(6)の3次項は式(3)のそれに一致する \((H_{50} = 0) \) ことに注意する。

凹面格子とホログラムの配置が、両者の波面 \(\Sigma_0 \) と \(\Sigma_0 \) が整合する。または座標系 \(O - \xi \eta s_0 \) と \(O_0 - \xi \eta s_0 \) が一致する（Fig. 2）ようなものであるとき、光学系には次式で表される収差（固有収差）が生じる。

\[
\xi_0 - \xi_0 \approx S_0 \xi_0^4 + S_2 \xi_0^4 \eta_0^2 + S_0 \xi_0^4 + S_2 \xi_0^4 \eta_0^2 \quad (7)
\]

ここで、\(N \) は \(\Sigma_0 \) の法線の方向余弦の \(\xi \) 成分である。また、\(S_0 = \xi_0 - H_{50} \).

3. 誤差解析

凹面格子とホログラムに対する照明光線の配置誤差および両者の波面 \(\Sigma_0 \) と \(\Sigma_0 \) におけるの配置誤差を解析し、このために光学系に生じる収差を考える。ここで、凹面格子に対するホログラムの配置は、両者の波面が整合するようにするものとし、したがって、この配置誤差は波面整合自体とその誤差によって表されることになる。ここで、凹面格子の誤差を仮定し、それによる収差を考慮する。

3.1 波面整合誤差とそれにによる収差

最初に、凹面格子とホログラムの光軸には配置誤差はないものとし、両者の基本波面 \(\Sigma_0 \) と \(\Sigma_0 \) の間の整合誤差とそれによる収差を考える。整合誤差の計算のための波面 \(\Sigma \) におけるの光軸が、\(\Sigma \) におけるの波面の光軸が \(\theta \) を通る、それぞれの \(\eta \) の |

\[W_m(\xi, \eta) \approx -w - \frac{\xi}{\rho_\xi} + \left(\frac{\eta}{\rho_\eta} \right) \eta \]

\[= \left(\frac{3H_{50}s_0}{2\rho_\eta^2} \right)^2 + \left(\frac{1}{\rho_\eta} - \frac{1}{\rho_\xi} \right) \frac{\eta^2}{\xi^2} - \frac{w}{2\rho_\eta^2} \eta^2 - 4S_0 \xi_0^2 - 2T_1 \xi_0^2 \eta_0^2 - 3T_0 \xi_0^2 \eta_0^2 - 5U_0 \xi_0^2 - 2V_0 \xi_0^2 \eta_0^2 \quad (8) \]

ここで、収差係数 \(S_0, T_1, T_0, U, V \) は付録式(B4)で与えられる。

3.2 照明の場合の配置誤差と検波面

Fig. 4 において、完全な格子面を \(S \)、誤差のある格子面を \(S' \) とし、\(S \) は格子中心 \(O \) で接し、\(S' \) は座標系 \(O - \xi \eta s_0 \) で配置されたものとする。照明光は \(\Sigma_0 \) の位置 \(A(\rho, \varphi, 0) \) (式(2)) から \(A'(\rho + \Delta \rho, \varphi + \Delta \varphi, \delta \varphi) \) に変位しているものとする。ここで、座標 \(\delta \varphi \) は、入射光の \(A'O \) が \(\xi \eta \) 面とつななる角で、\(S \) と \(S' \) のそれぞれを
点AとA'の光源で照明し、Sからの波面をΣsとΣa,Σ'からそれの波面をΣb'とΣa'とする。光源がAからA'に変位したことによる反射波面の回転をP' = (dγr, -cos φ × dφr, 0)とし、Σの回転P'後の位置をΣaとすると、P'上の任意の点P(ξ, η)での入射光線APに対応する回折光線が、Σa,Σb,Σ'において変換する点を0, 1, 2, 3とし、S'上の点P'(ξ', η')での入射光線A'P'に対応する回折光線が、Σa,Σb,Σa'を交わる点を2', 3', 4'とする。波面ΣaのΣについてのめりを、凹面側の収縮 <3'4'> <01> = W(ξ,η)と光線の変位による歪み <2'3'> <2'> = δW(a,ξ,η)（付録式(C1))の和と与えることができる。ここで、W(ξ,η)は次式で与えられるものとする。}

\[
W(ξ,η) = \sum_{i=1}^{n} \sum_{j=0}^{n} W_{i-j,j} ξ^{i-j} η^{j}
\] (9)

また、δW(a,ξ,η)は次式で表される

\[
δW(a,ξ,η) = \sum_{i=1}^{n} \sum_{j=0}^{n} δ_{i-j,j} ξ^{i-j} η^{j}
\] (10)

係数g_{ij}は付録式(C2)によって与えられる。

ここで、座標系O-ξ'η'ζ'に回転P'を与えて得られる座標系をO-ξ'η'ζ'とするが、被検波面Σaは、O-ξ'η'ζ'系で表すと、式(3)，(9)，(10)から次式のようになる。

\[
ξ \left({ξ}', {η}' \right) ≈ ξ_0 \left({ξ}', {η}' \right) + W(ξ,η) + δW(a,ξ,η)
\]

ここで、

\[
\frac{1}{2} \left(\frac{ξ^2}{ρ_1^2} + \frac{η^2}{ρ_2^2} \right) + C_3 \left(ξ',η' \right) + \sum_{i=1}^{n} \sum_{j=0}^{n} \left(W_{i-j,j} + g_{i-j,j} \right) η^{i-j} η^{j} \]

(11)

ここで、

\[
\frac{1}{2} \frac{ρ_1}{ρ_0} = \frac{1}{2} \frac{ρ_1}{ρ_0} + W_{a0} + g_{a0}, \quad \frac{1}{2} \frac{ρ_1}{ρ_0} = \frac{1}{2} \frac{ρ_1}{ρ_0} + W_{a2} + g_{a2}
\]

C = W_{11} + g_{11}

(11a)

波面Σaの水平および垂直方向の主曲率半径をρ_1とρ_2とし、主曲率半径がξ'=-η'およびη'=-ξ'なる点をφとすると、これらは両座標内の主曲率半径ρ_1とρ_2によって次式のように表される。

\[
ρ_1 ≈ \frac{1}{2}, \quad ρ_2 ≈ \frac{1}{2}, \quad Ψ ≈ C \left(\frac{1}{ρ_1} - \frac{1}{ρ_2} \right)^{-1}
\]

(12)

φは、近似的にΣaの焦点面がξ'轴となる角度である。これで、後に被検波面Σaと基準波面の整合を考える際の便宜のために、O-ξ'η'ζ'系をξ'軸のまわりにφだけ回転させて得られる座標系O-ξ'η'ζ'を導入する。ξ'軸とη'軸はΣaの主焦点面内にあるから、両座標系の間には次の関係がある。

\[\xi' = ξ' \cos ψ + η' \sin ψ\]

\[\eta' = -ξ' \sin ψ + η' \cos ψ\]

ξ' = ξ'

(13)

3.3 記録および照明光源の配置誤差と基準波面

Fig. 5において、ホログラムには座標系O-x'yz' (Fig. 2)が設定され、その記録および照明光源は、x'-z'面内で所定の位置Q_i(ρ_i, θ_i, 0)(i=1, 2, 3)からQ_i(ρ_i + δρ_i, θ_i + δθ_i, 0)に変位しているものとする。光源配置Q_1とQ_2のホログラムの回折波面を、それぞれ、ΣbcとΣacとする。光源のQ_1からQ_2への変位に対して、反射波面をy軸のまわりにφに近似してδW_0(φ, η) (O'-x'y'z'系)に変位する。これを次の回転式C_2によって与えることができる。このとき、O'-x'y'z'系をy軸のまわりにφだけ回転させて得られる座標系をO-x'yz'とする。Σbcは式(5)と同値でW_0を用いて、O-x'y'z'系で次式によって表される。

\[z_0(x', y') ≈ z_0(x', y') - δW_0(x', y')\]

\[≈ \frac{1}{2} \left(\frac{x'^2}{ρ_1^2} + \frac{y'^2}{ρ_2^2} \right) + Δz_0(x', y') - \left(q_0 x'^2 + q_0 x'^2 y'^2 + q_0 x'^2 y'^2 \right)\]

(14)

ここで、ρ_0 = ρ_σとρ_0 = ρ_σはΣbcの水平および垂直
直方向の主曲率半径、σ_r と σ_{θ_r} はそれぞれの誤差である。σ_r は次式で与えられ、

$$\sigma_r = \left(\frac{r_h}{r_v} \right) \sigma_v + \left(\frac{r_v}{r_h} \right) \sum_i \pm \left(\sum_i \sin 2\theta_i \cdot \sigma_{\theta_i} \right)$$

$(i = 1 \text{ または } -)$

また、係数 q_i は σ_r と σ_{θ_r} に依存する量で付録式 (C 4) で表される。

ここで、座標系 $O''x'y'z'$ 系と平行であり、z' 軸上 D' で $\rho''_x + \rho''_z \approx r''_x + r''_z$ (式 (12)) だけ離れた点 O'' を原点にしつ座標系 $O''x''y''z''$ を考える (Fig. 6)。波面 Σ_{Bc} と同光束の O'' を通る波面を Σ_B とし、これを $O''x''y''z''$ 系で表す。2 章で Σ_B の式を求めたときと同様にして、Σ_B 上の任意の点を $B''(x'', y'', z'')$ とし、これに対応する Σ_{Bc} 上の点を $B(x', y', z')$ とし、Σ_B は $B''(x'', y'', z'')$ によって、2 点の座標間の関係から次のように表される。

$$\xi''(x'', y'') \approx \frac{1}{2} \left(\frac{\xi''^2 + \eta''^2}{\rho_{h1}} \right) + \Delta \xi(\xi'', \eta'')$$

$$+ (d_1 \delta r_v + d_3 \delta r_h + d_4 \delta r_v + \Theta_1) \xi''^3$$

$$+ (d_1 \delta r_v + d_3 \delta r_h + d_4 \delta r_v + \Theta_2) \xi''^4$$

$$+ (d_1 \delta r_v + d_3 \delta r_h + d_4 \delta r_v + \Theta_3) \xi''^3 \eta''^2$$

$$- 3 \delta r_v (d_1 \rho_{h1} + 2 d_2 \rho_{h1}) \eta''^4$$

(15)

ここで、$\rho_{h1} = D' - r'_h \approx \rho_h + \delta r_h - \delta r_h$, $\rho_{v1} = D' - r'_v \approx \rho_v + \delta r_v$, 波面誤差の係数 $d_1 \sim d_6$ と $\Theta_1 \sim \Theta_3$ は付録式 (A3) で与えられる。

Fig. 5. Hologram wavefront Σ_{Bc} with aberrations due to recording and illuminating point source positioning errors.

Fig. 6. Reference wavefront Σ_B being distant from the wavefront Σ_{Bc} by $D'' = O''O'' = \rho''_x + \rho''_z'$. Σ_B is the test wavefront that Σ_B fits.
3.4 配置誤差による収差

Fig. 7 において、波面 Σ_0 が Σ_* と整合するとき、すなわち、$O_{\xi'}\xi''\eta''\xi'''$ (3.3 節参照) が $O_{\xi'}\eta''\xi''$ 系 (3.2 節参照) に一致するとき、Σ_0 が占める位置を Σ_0^p とし、Σ_0 が整合誤差のために Σ_0^p から変位した位置を Σ_0^m とする。この Σ_0 の整合誤差は、3.1 節と同様に、$O_{\xi'}\eta''\xi''$ 系において、変位 s, s', γ : 回転 s, t, χ : 平行移動 u, v, w が合成されたものをとする、Σ_0 の形状は基本波面 Σ_0 のそれと大きく異なることはないから、この整合誤差のために生じる収差は $W_0(\xi', \eta')$ (式(8)) で与えられる。したがって、波面 Σ_0^m の式は $O_{\xi'}\eta''\xi''$ 系で次のように表される。

$$\xi''(\xi', \eta') \approx \xi''(\xi', \eta') + \xi''(\xi', \eta')$$

さらに、式(13) の座標変換を用いて $O_{\xi'}\eta''\xi''$ 系で表すと次のようになる。

$$\xi''(\xi', \eta') \approx \xi''(\xi', \eta') + \xi''(\xi', \eta')$$

$$\approx \xi''(\xi', \eta') + W_0(\xi', \eta')$$

$$+ \left(\frac{1}{\rho_0} - \frac{1}{\rho_1} \right) \xi'' + 2(2H_{10} - H_{20}) \xi'' + 2H_{21} \xi'' \eta'$$

基準波面 Σ_0^m に対する被検波面 Σ_0^* の収差は、式(11) と (17) から $\xi''(\xi', \eta') - \xi''(\xi', \eta')$ で与えられる。ここで、N' は Σ_0^* の法線の方向余弦の ξ' 成分である。$O_{\xi'}\eta''\xi''$ 系での座標 (ξ', η') は $O_{\xi'}\eta''\xi''$ 系での座標 (ξ, η) とほぼ等しいから、両波面間の収差は次式で表現される。

$$\xi''(\xi, \eta) - \xi''(\xi', \eta') \approx -N' - \frac{1}{\rho_0} \sum_{i=1}^{\infty} \xi''_{i\xi'} (i-j=3) \eta'$$

(18)

ここで、

$$a_{i0} = \delta_{i0}, \quad a_{00} = \delta_{00}$$

$$a_{i0} = W_{20} + \delta_{i0}, \quad a_{10} = \delta_{11}, \quad a_{20} = \delta_{22}$$

$$a_{i0} = W_{20} + S_{ij} + \delta_{ij} \quad (i+j \geq 3)$$

(18a)

式(18a) の δ_{ij} は次式で与えられる。

$$\delta_{00} = s + \frac{\rho_0}{\rho_1}$$

$$\delta_{01} = (d_{10} + d_{21} + d_{32} + d_{43} + \Delta \rho_0 + \Delta \rho_1 + \Delta \rho_2)$$

$$\delta_{02} = \frac{w}{2\rho_0}$$

$$\delta_{11} = 4S_{11} + g_{11} - (d_{10} + d_{21} + d_{32} + d_{43} + \Delta \rho_0 + \Delta \rho_1 + \Delta \rho_2)$$

$$\delta_{12} = 2T_{01} + g_{12} - H_{12}$$

$$\delta_{22} = 2T_{12} + g_{22} - H_{22}$$

$$\delta_{33} = 5S_{33} + g_{33} - (d_{10} + d_{21} + d_{32} + d_{43} + \Delta \rho_0 + \Delta \rho_1 + \Delta \rho_2)$$

$$\delta_{44} = 2V_{11} + g_{44} - 2H_{12}$$

$$\delta_{55} = 3S_{31} + g_{55} - (d_{10} + d_{21} + d_{32} + \Delta \rho_0 + \Delta \rho_1 + \Delta \rho_2)$$

$$\delta_{66} = 2H_{22}$$

式(18b) で a_{11} と a_{02} の右辺に、それぞれ、係数 W_{11} と W_{02} が現われないのは、W_{11} は ψ (式(12)) の中に、W_{02} は ϕ_0 (式(11a)) の中に吸収されているためである。

さて、光学要素の配置誤差のために生じる収差は、式(18b) の δ_{ij} を用いて次式で表される。

$$\frac{1}{\rho_0} \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} \xi''_{i\xi'} (i-j=3) \eta'$$

(19)

収差係数 δ_{ij} は他の収差係数と $a_{ij} = W_{ij} + S_{ij} + \delta_{ij}$ (式(18a)) によって結ばれている。したがって、δ_{ij} の値が定まれば、この値は、最小二乗法を用いて式(18) を干渉線にフィットさせて求める。δ_{ij} は $a_{ij} - S_{ij}$ によって評価することができる。しかし、この評価値は誤差 δ_{ij} をもつことになる。δ_{ij} は未確定の量であるが、評価値 $a_{ij} - S_{ij}$ からその誤差として分離される。ここでは、非球面の検査で行われるようにに、収差 $\sum (S_{ij} + \delta_{ij}) \xi'' \eta'$ を干渉線にフィットさせて収差 $\sum \delta_{ij} \xi'' \eta'$ を推定し、それを検査目的の収差 $W_{20} \xi'' + \sum W_{ij} \xi'' \eta'$ から分離するという方法に従うことはできない。というのは、両収差は相互に補償し合う収差項をもつからである。
4. 数値例

干渉光学系のひとつの数値例を示し、各配置誤差が円面格子の収束測定の精度に及ぼす影響を考察する。被検試料は、福原・波岡モノクロメータ用に設計された光学間隔線基準のもので次の仕様をもつものとする。被検面積 2a×2b=38×27 mm²、曲率半径 R=400 mm、格子定数 σ₀=1/600 mm、被検面の焦点距離の誤差は |δρ₀|<1.2 mm、その主焦平面がφ θ 軸となる角ψは |ψ|<8°とする。ここで、収束係数 W₀と W₁は実際に十分小さいと見なせるとして、W₀=0、W₁=0とおき、|δρ₀|と|ψ|の限界値は、それぞれ、式(11a)と(12)で計算される。整合誤差については、|s₀|<1.0 mm、|s₁|<1.0 mm とし、他の小さな整合誤差は任意とする。

| 表 1. A numerical example of evaluation of the coefficients δij of the system error aberrations. The components of δij are evaluated from the error limits, and their values normalized by cij=a'b'/λ are shown, where 2a and 2b are the grating width and length, respectively, and λ is the wavelength. |
|---|---|---|---|---|---|
| cij=a'b'/λ | S₀、S₁ | χ、γ | δρ₀、δρ₁、δγ | ψ |
| c₀₀× | 3H₀₀|max | 0.708 | 0.629 |
| c₁₁× | 3H₁₁|max | 0.394 | 0.030 |
| c₀₁× | 2T₀₁|max | 0.042 | 0.069 |
| c₀₂× | 2T₀₂|max | 0.651 | 0.032 |
| c₁₀× | 3H₁₀|max | 0.029 | 0.001 |
| c₁₂× | 2T₁₂|max | 0.002 | 0.008 |
| c₂₀× | 3H₂₀|max | 0.020 | 0.022 |
| c₂₁× | 2T₂₁|max | 0.002 | 0.015 |
| c₂₂× | 2T₂₂|max | 0.002 | 0.002 |

* The values to be obtained from interferogram analysis.
項は 0.1λ の精度で、また、それ以外の収差項は 0.1λ より良い精度で測定できることを示している。他の場合についても、光学系の配置誤差が、距離について 1 mm 程度、角度について 5°程度であるならば、おそらく同様な測定精度が得られるものと考えられる。上記の 0.3λ の測定精度は、被検波面の球面波面からの大きな偏差 260λ を考えれば、相対的に良いものと考ええる。

この干渉法では、収差項 \(W_{15} \eta \) と \(W_{02} \eta^2 \) は波面整合のためにバランスさせていて測定にかからない。また、\(W_{22} \xi^2 \)項は、主に被検および基準波面の主曲率半径の誤差のために、測定精度が大きく制限される。これらの 2 つの収差項は、凹面格子の通常のマウンティングではスペクトル像を本質的に劣化させることもなく、測定する必要はほとんどないと考えられる。2 つの収差項の測定は、被検波面の大局的な絶対形状（主曲率半径など）を高精度に測定することに関連するから一般にはむずかしい。

5. まとめ

凹面格子検査用トーリック波面ホログラフィック干渉法の誤差解析を行い、干渉光学系における各種の配置誤差が凹面格子の波面収差測定の精度に及ぼす影響を明らかにした。この干渉法では、被検トーリック波面が球面波面から大きく偏差している場合でも、3 次以上の波面収差項は相対的に高い精度で測定できるといえる。これらの測定精度を良くするには、特にホログラム光源の配置誤差を小さくすることが重要である。

本研究において、多くの助言と激励をいただいた、東北大学波岡武名誉教授、本学後藤克也名誉教授、ならびに、近畿大学重質教授に、数値例に用いた凹面格子を提供してくださった、東京都立大学原田進男教授と目立製作所多田敏昭博士に、また、本稿を読んで有益な論議をしてくださった、大阪府立大学岩田耕一教授に謹んで感謝の意を表します。

文献

付 録 A

\[\Delta \xi (\xi, \eta) \text{ 式(3)) の展開係数 } \xi_0: \]

\[
\xi_0 = \sin^3 \alpha \varphi - \frac{m \lambda}{2 \rho^2} \frac{b_1}{R^2},
\]

\[
\xi_1 = 5 \sin^3 \alpha \varphi - \frac{m \lambda}{8 \rho^2} \frac{b_1}{R^2} + \frac{1}{4 \rho_b \rho_c} \left(1 - \frac{\rho_b}{\rho_c} \right),
\]

\[
\xi_2 = \frac{1}{4 \rho_b \rho_c} \left(1 - \frac{\rho_b}{\rho_c} \right),
\]

\[
\xi_3 = 7 \sin \varphi \varphi \left(2 - \frac{1}{2 \rho_b \rho_c} \right) \xi_0,
\]

\[
\xi_4 = \xi_0 \frac{\rho_b}{2 \rho_c}.
\]

(A1)

\[\Delta \zeta (\xi, \eta) \text{ 式(6)) の展開係数 } H_s: \]

\[
H_0 = \frac{\rho_b}{2 \rho_c} s_0,
\]

\[
H_0 = \frac{\rho_b}{2 \rho_c} \left\{ \frac{9 D b h}{r_c} s_3 - s_0 (4 + 2 s_2 - s_3)^3 s_0 + 5 s_0 \right\}
\]

\[
+ \frac{1}{8 \rho_c} \left(\left(\frac{\rho_c}{\rho_c} \right)^4 - 1 \right),
\]

\[
H_2 = - \frac{\rho_b}{2 \rho_c} s_2 + \frac{1}{4 \rho_b \rho_c} \left(\left(\frac{\rho_c}{\rho_c} \right)^2 - 1 \right),
\]

\[
H_3 = - \frac{\rho_b}{2 \rho_c} \left\{ \frac{27 D b h}{r_c} s_3 - \frac{6 D b h}{r_c} s_3 s_0 (3 s_2 + 3 s_3 - s_2 - 5 s_0) \right\}
\]

\[
- 2 s_2 (1 + 8 s_2 - 4 s_3) + 7 s_2 \}
\]

(A2)

波面誤差（式(15)) の係数 \(d_i, \) \(\Theta_i: \)

\[
d_1 = -3 H_{b s}, d_2 = 3 H_{b s} \left(\frac{1}{\rho_b} + \frac{1}{r_c} \right), d_3 = -H_{b b} \left(\frac{3}{\rho_b} + \frac{2}{r_c} \right)
\]

\[
\Theta_i = \frac{\rho_b}{2 \rho_c} \sum (\pm) \left(-2 s_2 + s_3 + 3 s_2 - s_3 s_0 \right) \cos \theta_i \cdot \theta_i
\]

光学
\[\begin{align*}
T_e &= H_{3e} + \frac{1}{4\rho_e} \left(\frac{1}{\rho_e} - \frac{1}{\rho_h} \right) \\
U &= H_{5e} - \frac{p_0}{2\rho_e} H_{30}, \quad V = H_{3e} - \frac{p_0}{2\rho_e} H_{30} \quad \text{(B4)}
\end{align*}\]

付録 C

四面格子において、照明源が \(A(\rho, \varphi, 0)\) から \(A'(\rho + \delta \varphi, \varphi + \delta \varphi, 0)\) に変位したことによる波面歪み \(\delta W, \delta \varphi (\xi, \eta) (\text{Fig. 4})\) は、光源が \(A\) から、それぞれ、\(A\rho (\rho + \delta \varphi, \varphi, 0), A\varphi (\rho, \varphi + \delta \varphi, 0), A\varphi (\rho, \varphi, 0)\) に変位したことによる波面歪み \(\delta W, \delta W, \delta W\) の和によって、次式のように表される。

\[
\delta W(\xi, \eta) \approx \delta W + \delta W' + \delta W' \approx \sum_{i=1}^{N} \sum_{j=1}^{N} g_{i,j} \xi^{i} \eta^{j} \quad \text{(C1)}
\]

ここで,

\[
\begin{align*}
g_{22} &= \cos^{2} \varphi \delta \rho + \sin \varphi \left(\cos \varphi - \frac{1}{2R} \right) \delta \varphi \\
g_{11} &= \frac{\sin \varphi}{\rho} \delta \gamma \\
g_{20} &= \frac{1}{2\rho} \delta \rho - \sin \varphi \frac{1}{2R} \delta \varphi \\
g_{22} &= \frac{\sin \varphi}{\rho^{2}} \left(\cos^{2} \varphi - \frac{1}{2R} \right) \delta \rho + \frac{1}{2} \left(\frac{3\sin^{2} \varphi \cos \varphi - \sin^{2} \varphi + \cos \varphi}{\rho^{2}} \left(\frac{1}{\rho} - \frac{1}{\rho_{0}} \right) \right) \delta \varphi \\
g_{31} &= \frac{1}{2} \left(\frac{3\sin^{2} \varphi + \cos \varphi}{\rho^{2}} \left(\frac{1}{\rho} - \frac{1}{\rho_{0}} \right) \right) \delta \gamma \\
g_{22} &= \frac{\sin \varphi}{\rho^{2}} \delta \rho + \frac{1}{2} \left(\cos \varphi - \frac{1}{\rho_{0}} \right) \delta \varphi \\
g_{22} &= 0 \\
g_{22} &= \frac{1}{2} \left(\frac{3\sin^{2} \varphi + \cos \varphi}{\rho^{2}} \left(\frac{1}{\rho} - \frac{1}{\rho_{0}} \right) \right) \delta \rho + \frac{3}{4} \left(\frac{3\sin^{2} \varphi + \cos \varphi}{\rho^{2}} \right) \delta \varphi \\
g_{22} &= \frac{1}{8R^{2}\rho^{2}} \delta \rho - \sin \varphi \frac{1}{8R^{2}} \delta \varphi \quad \text{(C2)}
\end{align*}
\]

\(\delta W, \delta W, \delta W\) は Welford の方法によって計算される。

ここでは、これらの量に対する正負の符号の取り方は Welford のそれと逆にしてある。

付録 B

収差 \(A_{n}\) と \(A_{e}\) を求めるために、波面 \(\Sigma_{n}\) と主曲率半径 \(\rho_{n}\) と \(\rho_{e}\) をとり、タイヤ型および樽型トーリック波面を補助的に行う。タイヤ型および樽型トーリック波面は、それぞれ、無限長 \(l_{1}\) と \(l_{2}\) （Fig. 3）を軸にして回転しても格子中心 \(O\) を通る波面の形状は常に同一であり、次式によって表される。

\[
\begin{align*}
\xi_{i}(\xi, \eta; \rho_{n}, \rho_{e}) &= \rho_{n} - \left[\left(\frac{\rho_{n}^{2} - \xi^{2} - \eta^{2}}{\rho_{n}^{2}} \right) \left(\frac{\rho_{n} - \sqrt{\rho_{n}^{2} - \xi^{2}}}{\rho_{n}} \right) \right]^{1/2} \\
&= \frac{1}{2} \left(\frac{\rho_{n}^{2} + \xi^{2}}{\rho_{n}} + \frac{\rho_{n}^{2} + \xi^{2} + \eta^{2}}{\rho_{n}} \right) + \cdots \\
\xi_{i}(\xi, \eta; \rho_{n}, \rho_{e}) &= \xi_{i}, (\xi, \eta; \rho_{n}, \rho_{e}) \quad \text{(B1)}
\end{align*}
\]

それぞれの波面に対する \(\Sigma_{n}\) の収差 \(A_{n}\) と \(A_{e}\) は式(B1) と(B2) から次式で得られる。

\[
A_{n} + A_{e} = (\bar{\Sigma}_{n} - \bar{\Sigma}_{e}) (\bar{N}_{n})
\approx H_{5e} \xi^{2} + H_{3e} \xi^{2} \eta^{2} + T_{h} \xi^{2} \eta^{2} + U \xi^{2} \eta^{2} + V \xi^{2} \eta^{2} \quad \text{(B3)}
\]

ここで、\((\bar{N}_{n})\) は \(\Sigma_{n}\) の法線方向余弦の \(\xi\) 成分であり、収差係数は次式で与えられる。

\[
\begin{align*}
S &= H_{5e} + \frac{1}{8} \left(\frac{1}{\rho_{e}} - \frac{1}{\rho_{h}} \right) \\
T_{h} &= H_{3e} + \frac{1}{4\rho_{h}} \left(\frac{1}{\rho_{e}} - \frac{1}{\rho_{h}} \right)
\end{align*}
\]

29 巻 2 号 (2000) 99 (41)
ホログラムにおいて、記録および照明光源が点 \(Q_i (r_i, \theta_i, 0) \) \((i=1, 2, 3)\) から \(Q_j (r_j + \delta r_j, \theta_j + \delta \theta_j, 0) \) に変位することによる波面歪み \(\delta W_0 (x, y) \) (Fig. 5) も同様に計算できる。この場合には、波面歪みは、照明光源の変位によってだけでなく、記録光源の変位によっても生じ、後者による波面歪みも計算できるように Welford の計算法は拡張され、\(\delta W_0 (x, y) \) は次式のように求められる。

\[
\delta W_0 (x, y) \approx \frac{1}{2} \left(\frac{\delta r_j}{r_j^2} x^2 + \frac{\delta r_j}{r_j^2} y^2 \right) + q_{00} x^2 + q_{02} x^2 y^2 + q_{04} y^4 \tag{3}
\]

ここでは、

\[
\frac{\delta r_j}{r_j^2} = \frac{\delta r_j}{r_j r_j} + \frac{1}{r_j} \sum \left(\pm \right) \sin \theta_i \cdot \delta \theta_i
\]

\[
q_{00} = -\frac{s_2}{8 r_j} \delta r_j + \frac{1}{2 r_j^2} \sum \left(\pm \right) \left(-2 s_2 + s_2^2 + 3 \sin^2 \theta_i \right) \times \cos \theta_i \cdot \delta \theta_i
\]

\[
q_{02} = -\frac{3}{8 r_j^2} (1 - 6 s_2 + 5 s_2) \delta r_j
\]

\[
+ \frac{1}{2 r_j^2} \sum \left(\pm \right) \left(-3 + 5 \sin^2 \theta_i \right) \sin \theta_i
\]

\[
-3 s_2 \cos \theta_i \cdot \delta \theta_i
\]

\[
q_{22} = -\frac{3}{4 r_j^3} (1 - 3 s_2) \delta r_j - \frac{3}{4 r_j^2} \sum \left(\pm \right) \sin 2 \theta_i \cdot \delta \theta_i
\]

\[
q_{04} = -\frac{3}{8 r_j^4} \delta r_j
\]

(C4)