Recoil-Free Spectroscopy of Strontium Atoms Confined in the Lamb-Dicke Regime

Tetsuya Ido* and Hitoshi Katori*•**

Applying a light-shift cancellation technique, spectroscopy on the $^1S_0-^3P_1$ transition of 88Sr atoms is demonstrated in a one-dimensional optical lattice. Photons elastically scattered by atoms confined in the Lamb-Dicke regime provide a Doppler as well as recoil free spectrum of 11 kHz. The developed scheme bears similarity to that of high resolution spectroscopy of a single ion trapped in the Paul trap, but allows observing significantly large number of quantum absorbers at the same time. We anticipate these optical lattice spectroscopy may offer an alternative approach for the realization of an atom-clock in optical frequencies.

Key words: high-resolution spectroscopy, frequency standard, Lamb-Dicke regime, optical lattice, alkaline-earth atoms, strontium
図1 ストロンチウム原子のエネルギー図。電子状態はスピ
ン一重項と三重項状態からなり、分光波長のS_{2}^{1}P_{1}状態を
トラップ光によってそれぞれのスピン状態と結合する。
このとき光シフトのトラップ波長依存性を利用することで、
両者の光シフトが一致する波長が見いだされる。この波長の
光定在波により一元光格子を作り、ラム・ディッケ領域へ
の原子閉じ込めを行う。

の吸収スペクトルを得ることができ可能になる。本稿では、一
次元光格子トラップ中に束縛した原子の無反跳分光を報告
する。これは、中性原子集団に対する、新たなドップラー
フリー分光手法を提示し、可視光周波数標準のための基礎
技術となる可能性を秘めている。

1. ストロノチウム原子の光シフト制御

アルカリ土類金属では光吸収に2個の価電子をもち、この
スピンの組み合わせにより一重項と三重項の電子状態を
とる。この間の変更状態関数^{1}S_{2}^{1}P_{1}は、超高速解能分光
実現の格好のターゲットとして、これまでにも多くの分光
研究がなされてきた。図1にストロノチウム原子の準位図
を示す。近赤外光による光トラップを行うとき、^{1}S_{2}状態
は一重項の最初の励起状態5s5p^{1}P_{1}(共鳴波長461nm)と
最も強く結合し、一方、分光遷移の上準位^{3}P_{1}はスピン三
重項の励起状態、とくに、5s5d^{2}D_{2,3}(2.7μm)と5s6s^{3}S_{1}
(668nm)状態と強く結合する。これらの光シフト量を文
献5)にまとめてある複数の遷移強度の実験値から計算す
ると、840〜950 nmの間の特定の波長で^{1}S_{2}の光シフトと
一致することが予測される。

2. 光格子のある元光格子

実験では閉じ込めポテンシャルとして定在波による一次
元光格子を用いた。光強度300〜500 mWのトラップ光を、
磁気光学トラップした極低温ストロンチウム原子雲にビームウェストが一致するように対物レンズで絞り、これをさ
らに凹面鏡で反射して定在波を形成することで、光軸方向
に半波長周期の緊い低い波長を形成した。典型的なトラッ
プ光の1/eビーム直径は45μmで、ポテンシャルの深さは
15〜24 μK程度であった。トラップ領域では0.5 G(ゼ
ーマンシフト1 MHzに対応)のバイアス磁場をかけること
で量子化軸を定義し、このゼーマンシフトによって、磁気
指数位にトラップ光によるラマン結合の影響を排除し
た。この定在波の波面に垂直にプローブ光を導入し、原子
からの共鳴ルミネスを光電子増幅管で観察した。

光トラップ内原子の共鳴周波数の、光トラップ波長依存
性を図2に示す。ここで、トラップ光の偏光(Ε)は、バ
イアス磁場(Β)に対して直交する場合と平行の場合について
測定した。Ε⊥Βの偏光配置では、910〜920 nm近辺で
^{1}S_{2}と^{3}P_{1}の光シフトが一致する波長が存在する。さらに
精度よくこの波長を確定するため900〜930 nmにおいて
遷移周波数の光強度依存性を測定し、その結果光強度依存
性を最も低減できる(10 Hz/(kW/cm^2)以下)ずなわち
光シフトが一致するトラップ光波長が914±2 nmである
ことがわかった。なお、現在この測定精度はプローブーレ
ザーの周波数と光トラップ偏光の安定度によって制限され
ている。

光シフトを一致させたときの、光格子中の原子のレーザー
誘起蛍光スペクトルを図3(a)に示す。ラム・ディッケ束
縛によって、ドップラー広がりが抑制され、プローブ光の
波幅が適当なだけで決まる波長幅11 kHzのスペクトルが
得られている。このラム・ディッケ束縛の有用性は、原子
を光格子から開放することによって得られる図3(b)のス
ペクトルによって確認できる。自由空間内の原子では、式
(1)の第2項に対応して、光格子周辺での振動エネルギー
図3 一次元光格子中閉じ込められた原子（a）、光格子から開放直後の原子（b）に対するレーザー誘起透光スペクトル、光格子の閉じ込めによって100kHzのドップラー広がりが抑制されて、飽和強度のみで制限された半価幅11kHzのスペクトルが得られている。両者のスペクトルの中心周波数のずれはリコイル周波数（ħκ0）/2m = 5kHzに起因する。

を反映する半価幅100kHzのドップラー広がりを生じている。さらに、このスペクトル中心は、第3項の反跳シフト（5kHz）に対応した高エネルギー側へのシフトを生じていることから、自由空間中の原子の共鳴周波数χを、光格子中の共鳴周波数と一致していること、つまり、光シフトの一致によって、束縛ボテンシャルの影響が相殺されていることがわかる。

ここで紹介した中性原子での無反跳分光は、可視域での周波数標準実現のスキームを考える上で、新しい可能性を提示している。同様の手法を、三次元の光格子に拡張し、原子を各マイクロトラップに1個ずつ閉じ込めれば、原子間衝突を排除しつつ10⁶個にも及ぶ原子の同時観測が可能になる。また、このときストロンチウム原子の奇数同位体を使って、超微細混合で生じる⁵S₁⁻⁴P₁間の光学遷移を観測すれば、テンソルシュタルクシフトの問題も回避することができ、測定精度の大幅な向上が期待できる。

最近のラム・ディッケ領域の単一水銀イオンの分光では、紫外域の電気四重極遷移を6.7Hzのスペクトル幅で測定し、測定粒子数N＝1で決まるショット・ノイズ限界に迫る安定度を実現している。これに対して、本稿の光格子の中性原子を用いる手法では、N（≥1）個の原子に対して同時に分光を行うことができるため、同程度のスペクトル幅をもつ単一イオンの場合と比べてショット・ノイズ限界を1/√Nにできるのが最大のメリットであり、高分解能分光や光波数標準の実現手法として興味深い研究対象となっている。

文 献

(2002年7月26日受理)