大容量波長分割多重伝送における広帯域光増幅技術

石川悦子

Broaden Optical Amplification Technology for High Capacity WDM Transmission

Etsuko ISHIKAWA

This paper reports the searches of the bandwidth expansion of the erbium doped fiber amplifier (EDFA) and the ultra wide bandwidth Raman amplifier as the amplification technologies for a high capacity WDM transmission. First, it looks back at the fundamental principle of EDFA through development stories of C band EDFA and L band EDFA. Then, a new approach using EDF to the S band optical amplifier is shown as a search for the possibility of EDF. Next, using a broadband distributed Raman amplifier with pump-and-signal wavelength-interleaving allocation is introduced as the different approach from a rear earth doped fiber amplifier. Finally, I try to discuss the candidate of next generation amplifiers.

Key words: Er doped fiber amplifier, Raman amplifier, S band, wavelength division multiplexing (WDM)

1987年に登場したエルビウムドープファイバー増幅器 (EDFA: erbium doped fiber amplifier) は, 波長分割多重 (WDM: wavelength division multiplexing) 伝送技術に よる伝送容量の増大に大きく貢献した。1995年ごろに、 1550~1560 nm を増幅帯域とする EDFA を用いた 2.5 Gbit/s を四波多重した 10 Gbit/s の光通信が実現すると大 容量化のための技術開発が加速され¹⁾,その後 EDFA は増 幅帯域を 1530~1565 nm に拡大した C バンド EDFA が開 発され、つづいて1570~1610 nm を増幅するLバンド EDFA が開発された. これらの光増幅器は、CバンドとL バンドのデュアルバンド構成による大容量化を可能とし, 1.8 Tbit/s 伝送装置の商用化を成功させた²⁾. 一方,大容 量化の研究開発では、Cバンド・Lバンドに次ぐ第3のバ ンドであるSバンドの1480~1510 nm を増幅する利得シ フトツリウムドープファイバー増幅器が開発され,3種類 の光増幅器を組み合わせた 10.9 Tbit/s の伝送実験が話題 を呼んだ³⁾.また,光増幅帯域を任意に設計できるラマン増 幅器を用いて、SバンドからUバンドの1450~1661 nm の 432 波を伝送することに成功し, 1000 波多重の可能性が 示されている⁴⁾. このように 2002 年までは大容量伝送の報 告が相次いだが、それ以降は、2000 年 3 月に始まった IT バブルの崩壊による研究開発のスピードの鈍化がみえはじ める.しかし、大容量伝送に向けた研究開発は地道に進め られ、光ファイバー1 芯あたりの伝送容量を上げるための ① 新規伝送帯域の開拓、② 波長多重の高密度化、③ 波長 あたりのビットレートの向上、などへの取り組みがなされ ている.

本稿では、新規伝送帯域の開拓のための光増幅器の帯域 拡大技術に着目し、EDFAの増幅帯域拡大の追求と、Sバ ンドからUバンドまでを増幅する超広帯域ラマン増幅器 について概説する.

1. EDFA の増幅帯域拡大の追求

1.1 EDF の基本特性

希土類3価イオンの4f-4f電子遷移の誘導放出現象は, 増幅媒体の形状を光ファイバーとすることで,高効率な光 増幅器を可能とした。希土類3価イオンの種類によって増 幅帯域はほとんど決定されるが,Er³⁺の誘導放出波長と光

株式会社富士通研究所(〒211-8588 川崎市中原区上小田中 4-1-1) E-mail: ishikawa.etsuko@jp.fujitsu.com

ファイバーの最低損失波長が1550 nm 帯で一致し、この偶 然の一致が光通信分野の発展に貢献したことはいうまでも ない。

Er³⁺ は図1に示すように終準位と基底準位を同じとす る三準位系であり,ほとんどのEr³⁺ イオンが誘導放出に 寄与できることから,高出力な光増幅器を構成しやすく, 高出力化が必要な波長多重光増幅器に適したイオン種でも ある.励起光源には,高出力特性が得られる1480 nm帯 LD,低雑音特性が得られる980 nm帯LDが用いられてい る.増幅帯域は,すでに商用化されたCバンドとLバンド に加え,1490~1520 nmのSバンド領域についても検討さ れている.

EDFの利得係数の波長特性は、図2に示すように、全 イオン密度 n_t と始準位イオン密度 n_2 の比の反転分布率 n_2/n_t をパラメーターに用いて表すことができる。EDF長 の設計や励起光の制御、EDFA構成によって n_2/n_t を変化 させ、CバンドとLバンド、そしてSバンドの増幅を実現 している。

1.2 Cバンド EDFA とLバンド EDFA

 $C バンドでは n_2/n_t を 70% 付近になるように制御し,利$ 得等化器と組み合わせることで、平坦な波長特性をもつ波 長多重光増幅器を実用化した。また、Er³⁺の三準位系の特 徴を利用して EDF を長尺にすることで、L バンドの利得 が得られることが知られている。このとき, EDF の長手方 向の平均 n₂/n_t を 40% 程度にすることで、この波長領域 で波長特性が比較的平坦となり、20~25 dBの利得を得る ことができる⁵⁾. しかしながら, 図2に示すように, n_2/n_t が40%のときの相対利得係数は0.05 dB/m以下と小さ く、Cバンドに比べ約 5~10 倍の長尺 EDF と高出力の励 起光源が必要となる。1997年以降の設備投資ブームの追 風、Cバンド EDFA を実用化するための要素技術の蓄積、 励起LDの高出力化などがあって、1997年のLバンド EDFA の発表以降5, 急速に研究開発が進み, 1998年のL バンド伝送実験の報告⁶⁾, 2001年には商用システムに搭載 された2).

図2 EDFの相対利得係数スペクトルの反転分布率 n_2/n_t の依存性.

さて、現在注目されているCバンド EDFA の技術課題 は、波長数や波長配置が変動した場合の利得波長特性変動 の抑圧である⁷⁻¹¹⁾. OADM (optical add-drop multiplexers) によって、波長数が大きく変化するメトロコア領域 に、DWDM システムの導入が進められている. 波長数や 波長配置が大幅に変化した場合、波長平坦性を保つことが 難しい. この現象は EDF のスペクトラルホールバーニン グ現象と考えらえられていたが¹¹⁾、最近まで、その研究成 果に大きな進展がなかった. しかし、波長を挿抜する機能 の OADM, OXC (optical cross connects) HUB ノード などを多用することが検討されている現在、システムへの 影響が無視できないことから、スペクトラルホールバーニ ングの解明が活発になってきている.

Lバンド EDFA の技術課題として、四光波混合クロス トークの抑圧検討^{12,13)},短尺化検討^{14–16)},効率改善のため の励起構成検討¹⁷⁾などが議論されている。

1.3 Sバンド EDFA

前述してきた C バンド EDFA や L バンド EDFA に適 用された EDF は十分な実績があり、この EDF を用いた S バンド光増幅の検討が行われている¹⁸⁻²¹⁾. 図 2 からわかる ように、EDF においても、80% 以上の n_2/n_t では S バン ド領域で利得が得られることがわかる. しかしながら、S バンド領域の利得を得るためには、S バンドより大きな利 得係数をもつ C バンドの自然放出光の成長(ASE: amplified spontaneous emission)に励起光パワーが費やされる ことを阻止しなければならない。ASE 抑圧方法として 2 つの方法が提案されており、1 つが ASE 抑圧フィルター を EDF の間に複数段配置する方法^{18,20}、もう 1 つが EDF の屈折率プロファイルによって ASE を抑圧する方法であ る^{19,21)}.

前者の光増幅器の構成は, EDF と ASE 抑圧フィルター

図3 Sバンド EDFA の基本ユニット構成と利得/損失特性.

の組み合わせが基本ユニットとなる。この基本ユニットの 特性を図3に示す。ASE 抑圧フィルターが1530 nm で30 dB以上の損失をもつことによって EDF の 1530 nm の ASE が抑圧され、Sバンド領域で利得が得られることが わかる.実効的な利得を得るために、Sバンド EDFA は 図4に示すように、基本ユニット4段とEDF1段を組み 合わせ、 n_2/n_t を高く保つための 980 nm 双方向励起が用 いられる¹⁸⁾. 用いた EDF の組成と濃度は SiO₂-GeO₂- Al_2O_3 と1000 ppm・wt であり、一般に用いられている EDF である. なお,各段の EDF 長は 4.5 m である. 波長 1489.3~1518.7 nm, 100 GHz 間隔 40 ch の増幅スペクト ルとNFのスペクトルを図5に示す。入力信号光パワー は-20 dBm/ch である。最大利得 25 dB, 平均雑音指数 6 dB が得られている。しかしながら、大きな利得偏差が発 生している様子がわかる.これは、ASE 抑圧フィルターの 損失スペクトルと EDF 利得スペクトルとのミスマッチに よるものである。ASE 抑圧フィルターの設計・製造精度向 上により解決できるものと考えられる。また、各基本ユニ ットを 980 nm 励起し、それを 9つ、利得等化フィルターを 2つ用いて,利得 21 dB 以上,利得偏差 1.9 dB 以下,NF 6.7 dB以下が達成されたと報告されている²²⁾.一方で, EDF の材料からの取り組みも報告されており、Al 共ドー プEDFとP/Al共ドープEDFを比較し、P/Al共ドープ EDF を用いることで、9 dB の利得増加が得られている²⁰⁾。

EDFの屈折率プロファイルによる ASE 抑圧方法では, Arbore らは, EDFの屈折率プロファイルについて, ダブ ルクラッド型または W型と称される depressed-cladding 構造を提案している. 1525 nm 以上の長波長領域の基本伝 播モード損失を 100 dB 以上に設計した EDF を用いて S バンド EDFA を構成し,最大利得 36 dB,最大出力 11 dBm が得られている¹⁹. EDF のコア組成は 2.5% GeO₂,

図4 EDF と ASE 抑圧フィルターの基本ユニット 4 段と EDF 1 段から構成される S バンド EDFA の構成.

図5 Sバンド EDFA の利得と雑音指数スペクトル (入力信 号光パワー - 20 dBm/ch).

5.5% Al_2O_3 , 92% SiO₂ であり, Er 濃度は 0.15 wt%, コ ア径 4 μ m, コアと第1クラッドの開口数は 0.22 である. その後, EDF と EDFA 構成を改良することで, 1510~1490 nm 間の利得偏差が 20 dB から 7 dB に改善している²¹⁾.

両タイプのSバンド EDFA の課題は効率改善である. depressed-cladding EDF と ASE 抑圧フィルターの組み合 わせや,その構成の最適化などによる改善についても期待 したいところである.

2. 超広帯域分布ラマン増幅器

ラマン増幅とは、透明な物質に強い光(励起光)を入射 すると、ラマンシフト量だけ離れた波長に誘導ラマン散乱 を誘発し光増幅を行う現象である。増幅媒体に光の閉じ込 め効果の高いシングルモード光ファイバーを用いること で、波長分割多重伝送に要求される利得を得ることができ る。石英ガラスのラマンシフト量は13.2 THz であり、励 起波長周波数から、±13.2 THz に散乱スペクトルを観測 することができる。-13.2 THz へのシフトつまり長波長 側へのシフトをストークス散乱、+13.2 THz へのシフト つまり短波長側へのシフトをアンチストークス散乱と呼ぶ が、アンチストークスシフトは弱いことから、ラマン増幅 にはもっぱらストークスシフトの誘導散乱光が用いられて

図6 交互配置分布ラマン増幅器の励起光と波長多重信号光 の配置例.

いる. 1550 nm 帯の信号光を増幅しようとする場合,およ そ 100 nm 短波長側に励起光を配置することになる.内藤 らは,励起波長と信号光を交互に配置することで増幅帯域 幅 202 nm を実現する,交互配置分布ラマン増幅器を提案 した⁴.

冒頭に述べた3つの光増幅器を用いたマルチバンド伝送 を行う場合,光増幅中継器の入力側と出力側に分波器と合 波器を挿入する必要がある.ここでは,入力側の分波器に よる雑音特性の劣化,出力側の合波器による信号光パワー の低減という問題がある.これに対し,分波器・合波器を 必要とせず分布的に増幅する交互配置分布ラマン増幅器 は,雑音性や広帯域性を兼備えた光増幅器といえる.

交互配置分布ラマン増幅器の波長多重信号光と励起光の 配置例を図6に示す²³⁾.励起光は、ラマンシフト量の整数 で割った周波数ごとに配置する.励起光がラマンシフト量 分だけ離れた励起光をラマン増幅し、かつ出力平坦性を保 っために、この励起光波長の間にも励起光を配置するルー ルになっている.図6は整数を3にした場合である.交互 配置分布ラマン増幅器の構成を図7に示す.ラマン増幅媒 体となる正分散ファイバーと負分散ファイバーを組み合わ せた伝送路、広帯域光サーキュレーター、ラマン励起光源 と励起光スペクトルを狭める狭窄化フィルターから構成さ れる.その利得波長特性を図8に示す.有効な信号光波長 帯域幅は201.81 nm、平均利得10 dB、利得偏差3 dB であ った.また、この交互配置分布ラマン増幅器を用いて、4.32 Tbit/s・120 km の伝送を達成しており、この超広帯域化技 術より1000 波多重伝送の可能性を示している.

Sバンドへの帯域拡大のためのSバンド EDFAと,超 広帯域光増幅器について述べてきた。超広帯域光増幅器の 交互配置分布ラマン増幅器は、伝送路をマネージメントで きる海底システムの中継増幅器には有用であるものの、任 意種類の伝送路と伝送距離となる陸上系に適用することが 難しい技術である。また、ラマン増幅器には、励起効率が 小さいこと、ダブルレイリー散乱によるクロストークの増 大、非線形性の増大など、数多くの課題がある。陸上シス

図7 交互配置分布ラマン増幅器の構成.

図8 交互配置分布ラマン増幅器の利得波長特性.

テムには希土類ドープファイバー増幅器とラマン増幅器の ハイブリッド構成が適しているとの見方もされているが, 今後は,増幅帯域幅が 30~40 nm の希土類ドープファイバ ー増幅器と,低雑音特性と超広帯域特性の両面をもつラマ ン増幅器のすみ分けが必要となる.

3. 半導体光増幅器の広帯域化

最後に、1470~1610 nm を 20 nm 間隔で信号光を配置す る、CWDM (coarse WDM) 用光増幅器として期待される 半導体光増幅器開発の進展はめざましく、①量子ドット光 増幅器では 120 nm 帯域幅で 20 dB 以上の増幅利得、7 dB 以下の雑音指数、19 dBm 以上の飽和出力を実現してお り²⁴、また② MQW 光半導体増幅器では、同様に 120 nm 帯域幅で 4.5 dB 以下の雑音指数、19 dBm 以上の飽和出力 をレコードしている²⁵. 両光増幅器ともに、消費電力の低 減と偏波依存性の低減が課題である.また、波長分割多重 伝送装置への適用も視野に入れた低雑音化、高出力化にも 期待したい.

総務省から、「次世代 IP インフラ研究会・第一次報告 書・国内のバックボーンの現状と課題」が 2004 年 6 月 7 日に発表された。日本三大 IX (Internet eXchange)の公 開情報と、ある前提のもとにトラフィックの延びを試算し ている。それによると、2008 年末には現在のトラフィック の5倍~6倍の水準に達すると報告している.また,さら に新しい利用方法の登場や,ヒト対モノ,モノ対モノの通 信が普及した場合には,さらに大きな延びになると試算し ている.この資料は,幹線系の大容量化の流れが再び現れ ることを予測している.その大容量化を実現する手段とし て,帯域拡大なのか,波長多重の高密度化なのか,ビット レートの高速化なのか,より安く・使いやすい技術から適 用されていくだろう.光増幅器にとっては,帯域拡大のみ ならず,高出力化・低非線形化,低雑音化という課題も抱 えている.これらの課題解決に向けた現実的な取り組みに 期待したい.

文 献

- 1) 三木哲也: "WDM 通信システムとフォトニックネットワークの展望",昭和電線レビュー, 51 (2001) 6-11.
- 山口伸英,渡辺茂樹:"フォトニックシステム",FUJITSU, 52 (2001) 299-307.
- 3) K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara and T. Ono: "10.92 Tb/s (273×40 Gb/s) triple-band/ultra-dense WDM optical repeated transmission experiment," *OFC* 2001, PDP24 (2001).
- T. Tanaka, K. Torii, M. Yuki, H. Nakamoto, T. Naito and I. Yokota: "200-nm bandwidth WDM transmission around 1.55 μm using distributed Raman amplifier," *ECOC* 2002, PD 4.6 (2002).
- 5) H. Ono, M. Yamada and Y. Ohishi: "Gain flattened $\mathrm{Er^{3+}}$ doped fiber amplifier for a WDM signal in the 1.57–1.60 μ m wavelength region," IEEE Photonic Technol. Lett., **9** (1997) 596–598.
- 6) M. Jinno, T. Sakamoto, J. Kani, S. Aisawa, K. Oda, M. Fukui, H. Ono, M. Yamada and M. Oguchi: "1580 nm band, equally spaced 8×10 Gb/s WDM channel transmission over 360 km (3×120 km) of dispersion-shifted fiber avoiding FMW impairment," Trend Opt. Photonics, **16** (1997) 325-328.
- D. G. Foursa, A. N. Pilipetskii, D. Kovsh, M. Nissov and S. M. Abbott: "Experimental observation of the complex shape of spectral holes in erbium-doped silica fiber," *OAA* 2003, TuD2 (2003) 201–203.
- M. Nishihara, Y. Sugaya and E. Ishikawa: "Characterization and new numerical model of spectral hole burning in broadband erbium-doped fiber amplifier," *OAA 2003*, TuD3 (2003) 204-206.
- M. Nishihara, Y. Sugaya and E. Ishikawa: "Impact of spectral hole burning in multi-channel amplification of EDFA," *OFC 2004*, FB1 (2004).
- F. A. Flood: "Gain saturation behavior in L-band EDFAs," IEEE Photonics Technol. Lett., 12 (2000) 1156–1158.
- 11) E. Desurvire, J. L. Zyskind and J. R. Simpson: "Spectral

gain hole-burning in erbium-doped fiber amplifiers," IEEE Photonics Technol. Lett., 2 (1990) 246–248.

- 12) K. Aiso, Y. Moriai, N. Shibayama, T. Nakamura and T. Yagi: "Extremely low nonlinear Er, La co-doped fiber suitable for L-band amplifier," OAA 2002, OTuC3 (2002).
- 13) T. Haruna, M. Kakui, M. Takagi, M. Tanaka and S. Ishikawa: "Ultra-low nonlinearity EDFAs employing multimode EDF with effective mode area of 81 μm²," OAA 2004, OTuA2 (2004).
- 14) A. J. G. Ellison, J. E. Dickinson, D. E. Goforth, D. L. Harris, J. T. Kohli, J. D. Minelly, B. N. Samson, J. K. Trentelman and M. J. Yadlowsky: "Hybrid erbium silicate conventional-band fiber amplifier with ultra-low gain ripple," Trend Opt. Photonics, **30** (1999) 51-56.
- 15) B. O. Guan, H. Y. Tam, S. Y. Liu, P. K. A. Wai and N. Sugimoto: "Ultrawide-band La-codoped Bi₂O₃-based EDFA for L-band DWDM systems," IEEE Photonics Technol. Lett., **15** (2003) 1525–1527.
- 16) Y. Kubota, T. Teshima, N. Nishimura, S. Kanto, S. Sakaguchi, Z. Meng, Y. Nakata and T. Okada: "Novel Er and Ce codoped fluoride fiber amplifier for low-noise and highefficient operation with 980-nm pumping," IEEE Photonics Technol. Lett., 15 (2003) 525–527.
- 17) F. R. M. Adikan, A. S. M. Noor and M. A. Mahdi: "Optimum pumping configuration for L-band EDFA incorporating ASE pump source," IEEE Photonics Technol. Lett., 16 (2004) 1465–1467.
- 18) E. Ishikawa, M. Nishihara, Y. Sato, C. Ohshima, Y. Sugaya and J. Kumasako: "Novel 1500 nm-band EDFA with discrete Raman amplifier," *ECOC* 2001, PD.A.1.2 (2001).
- 19) M. A. Arbore, Y. Zhou, G. Keaton and T. Kane: "36 dB gain in S-band EDFA," OAA 2002, PDP4 (2002).
- 20) M. Kakui, M. Takagi, S. Endo, S. Ishikawa and M. Shigematsu: "S-band optical amplification employing silica-based phosphorous/alumina-codoped EDF," *OFC 2004*, FB3 (2004).
- 21) M. Arbore, Y. Zhou, H. Thiele, J. Bromage and L. Nelson: "S-band erbium-doped fiber amplifier for WDM transmission between 1488 and 1508 nm," *OFC 2003*, WK2 (2003).
- 22) H. Ono, M. Yamada and M. Shimizu: "S-band erbiumdoped fiber amplifiers with a multistage configuration design, characterization, and gain tilt compensation," IEEE J. Lightwave Technol., 21 (2003) 2240-2246.
- 23) 内藤崇男: "202 nm 広帯域光増幅器を用いた大容量伝送シス テム",電子情報通信学会論文誌(B), J87-B (2004) 471-477.
- 24) T. Akiyama, M. Ekawa, M. Sugawara, H. Sudo, K. Kawaguchi, A. Kuramata, H. Ebe, K. Morito, H. Imai and Y. Arakawa: "An ultrawide-band (120 nm) semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm realized with quantum-dot active layers," *OFC 2004*, PDP12 (2004).
- 25) K. Morito, S. Tanaka, S. Tomabechi and K. Kuramata: "A broadband MQW semiconductor optical amplifier with high saturation output power and low noise figure," *OAA 2004*, PD1 (2004).

(2004年8月11日受理)