# 大気擾乱媒質中を伝搬する部分的コヒーレント 光ビームの諸特性

# Properties of Partially Coherent Beams Propagating through Atmospheric Turbulence

## Tomohiro SHIRAI

The propagation of laser beams through atmospheric turbulence is a subject of considerable importance for many applications, such as remote sensing and free-space optical communications. However, fully coherent laser beams are very sensitive to the properties of the medium through which they propagate and, as a consequence, they broaden on propagation through atmospheric turbulence. The spatial broadening of the beam is a limiting factor in most applications. For this reason, in recent years, the propagation of partially coherent beams rather than fully coherent ones have been studied theoretically to show that under certain circumstances partially coherent beams are less affected by atmospheric turbulence than are fully coherent laser beams. In this paper, we review some of the recent findings obtained in these studies.

Key words: partially coherent beams, atmospheric propagation, coherence theory

大気擾乱媒質中を伝搬する光ビームの諸特性は、リモー トセンシングや空間光通信の基礎として、おもに空間的に コヒーレントなレーザービームを対象として研究されてき た<sup>1,2)</sup>. これらの応用分野では、一般に、その光ビームは 大気擾乱媒質の影響を受けずに伝搬することが期待されて いる.しかし、空間的にコヒーレントな光波ほどランダム な散乱媒質の影響を受けやすく、伝搬する光ビームの歪み や広がりの効果を無視できないことが経験的にも直感的に もよく理解される.そのため、これらの問題を解決する手 段として空間的に部分的コヒーレントな光ビームの利用が 考えられるが、このような視点に基づく研究はこれまでに あまり注目されてこなかった.

しかし 90 年代に入り、大気擾乱媒質中を伝搬する部分 的コヒーレント光ビームの振る舞いが計算機シミュレーシ ョンにより評価されたことから<sup>3,4)</sup>、改めてこの分野にお ける部分的コヒーレント光ビームの重要性が認識されたよ うに思われる<sup>5,6)</sup>.以上を背景として、筆者らは大気擾乱 媒質中を伝搬する部分的コヒーレント光ビームの諸特性を 現代的なコヒーレンス理論に基づき解析し,関連する諸現 象の理論的解明を目指す研究を進めてきた.本稿では,こ れらの研究の最近の成果を概説する.

白井

牣

宏

# 1. 大気擾乱媒質中を伝搬する部分的コヒーレント光 ビームの広がり

## 1.1 問題の定式化

大気擾乱媒質を伝搬する光ビームの解析には,条件に応 じた基本方程式の適切な選択が必要となる<sup>7</sup>.本研究で は,伝搬する光波の振幅ゆらぎが小さい場合でも大きい場 合でも適用が可能であり,さらに現象に対する直感的な理 解が得られやすい拡張型ホイヘンス・フレネルの原理 (extended Huygens-Fresnel principle) に基づく理論解 析を行う<sup>8</sup>.

図1に示すように、部分的コヒーレント光ビームを大気 擾乱媒質に入射させ、伝搬距離 z の位置で観測する問題 を考えよう。このとき、拡張型ホイヘンス・フレネルの原 理により、伝搬後の光波の振幅 U は、入射光の振幅 U<sup>(0)</sup>

産業技術総合研究所光技術研究部門(〒305-8564 つくば市並木 1-2-1 産総研つくば東) E-mail: t.shirai@aist.go.jp



図1 大気擾乱媒質中を伝搬する光ビームの解析のための概 念図.

を用いて

$$U(\boldsymbol{\rho}, z, \omega) = -\frac{ik \exp(ikz)}{2\pi z} \int U^{(0)}(\boldsymbol{\rho}', \omega) \\ \times \exp\left[ik \frac{(\boldsymbol{\rho} - \boldsymbol{\rho}')^2}{2z}\right] \exp\left[\psi(\boldsymbol{\rho}, \boldsymbol{\rho}', z)\right] d^2 \boldsymbol{\rho}'$$
(1)

と記述される.ここで、 $\rho \equiv (x, y)$  および $\rho' \equiv (x', y')$  は 二次元の位置ベクトル、 $k = \omega/c$  は波数 ( $\omega$ :角周波数、 c:真空中での光速)、 $\psi$ は擾乱媒質の性質に依存する位相 関数である.その結果、平均化された伝搬後の光ビーム強 度(厳密には、スペクトル密度) は

$$\langle S(\boldsymbol{\rho}, z, \omega) \rangle_{m} \equiv \ll U^{*}(\boldsymbol{\rho}, z, \omega) U(\boldsymbol{\rho}, z, \omega) \gg_{m}$$
$$= \left(\frac{k}{2\pi z}\right)^{2} \int d^{2}\rho_{1}' \int d^{2}\rho_{2}' \langle U^{(0)*}(\boldsymbol{\rho}_{1}', \omega) U^{(0)}(\boldsymbol{\rho}_{2}', \omega) \rangle$$
$$\times \exp\left[-ik \frac{(\boldsymbol{\rho} - \boldsymbol{\rho}_{1}')^{2} - (\boldsymbol{\rho} - \boldsymbol{\rho}_{2}')^{2}}{2z}\right]$$
$$\times \langle \exp\left[\psi^{*}(\boldsymbol{\rho}, \boldsymbol{\rho}_{1}', z) + \psi(\boldsymbol{\rho}, \boldsymbol{\rho}_{2}', z)\right] \rangle_{m} \qquad (2)$$

となる。ここで、、、、は波動場自身に対する統計平均を、 、、、、mは大気擾乱媒質に対する統計平均を、\*は複素共役 を表している。式(2)の被積分関数の第1項目は入射光 ビームの相互スペクトル密度である。また、同関数の最後 の項は、大気の屈折率ゆらぎの空間的パワースペクトル  $\mathcal{Q}_n$ を用いて

$$\langle \exp[\psi^*(\boldsymbol{\rho}, \boldsymbol{\rho}_1', z) + \psi(\boldsymbol{\rho}, \boldsymbol{\rho}_2', z)] \rangle_m$$

$$= \exp\left[-4\pi^2 k^2 z \int_0^1 \int_0^\infty \varkappa \Phi_n(\varkappa) \left[1 - J_0\left(\varkappa \boldsymbol{\xi} | \boldsymbol{\rho}_1' - \boldsymbol{\rho}_2' |\right) \mathrm{d}\varkappa \mathrm{d}\boldsymbol{\xi}\right] \right]$$

$$(3)$$

と記述される<sup>9,10)</sup> (J<sub>0</sub>:0次の第1種ベッセル関数).

以下の解析では、数学的な取り扱いを簡単化し現象に対 する理解をより深めることを目的として、ガウス型シェル モデル (Gaussian Schell-model: GSM) 光源<sup>11)</sup> から放射 された部分的コヒーレント光ビーム (GSM ビーム) に限 定した議論を行う. GSM 光源とは、光源の強度分布がガ ウス関数

$$S^{(0)}(\boldsymbol{\rho},\,\omega) = A \exp\left(-\frac{\boldsymbol{\rho}^2}{2\,\sigma_s^2}\right) \tag{4}$$

で与えられ,さらにその二次の空間的相関関数が2点の差 にのみ依存するガウス関数

$$\mu^{(0)}(\boldsymbol{\rho}_1 - \boldsymbol{\rho}_2, \omega) = \exp\left[-\frac{(\boldsymbol{\rho}_1 - \boldsymbol{\rho}_2)^2}{2\sigma_{\mu}^2}\right] \quad (5)$$

で与えられる部分的コヒーレント光源モデルである。そのため、このGSM 光源の相互スペクトル密度は

$$W^{(0)}(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, \omega) = A \exp\left(-\frac{\boldsymbol{\rho}_{1}^{2} + \boldsymbol{\rho}_{2}^{2}}{4\sigma_{s}^{2}}\right) \exp\left[-\frac{(\boldsymbol{\rho}_{1} - \boldsymbol{\rho}_{2})^{2}}{2\sigma_{\mu}^{2}}\right]$$
(6)

となる.ここで、A,  $\sigma_s$ ,  $\sigma_\mu$  はそれぞれ正の定数であり、  $\sigma_s$  は光源強度の広がり幅を、 $\sigma_\mu$  はその空間的コヒーレン スの広がり幅を表す。

式(3)と式(6)を式(2)に代入して積分を実行すると,

$$\langle S(\boldsymbol{\rho}, z, \omega) \rangle_m = \frac{A}{\mathcal{J}^2(z)} \exp\left[-\frac{\boldsymbol{\rho}^2}{2\sigma_s^2 \mathcal{J}^2(z)}\right] (7)$$

が導出される<sup>12)</sup>. ここで

$$\mathcal{\Delta}(z) = \left\{ 1 + \frac{1}{(k\sigma_{S})^{2}} \left( \frac{1}{4\sigma_{S}^{2}} + \frac{1}{\sigma_{\mu}^{2}} \right) z^{2} + \frac{1}{\sigma_{S}^{2}} \left[ \frac{2}{3} \pi^{2} \int_{0}^{\infty} \kappa^{3} \mathcal{Q}_{n}(\kappa) \, \mathrm{d}\kappa \right] z^{3} \right\}^{1/2}$$
 (8)

である.したがって,

$$w(z) = \left[\frac{\int \rho^2 \langle S(\boldsymbol{\rho}, z, \omega) \rangle_m d^2 \rho}{\int \langle S(\boldsymbol{\rho}, z, \omega) \rangle_m d^2 \rho}\right]^{1/2} \qquad (9)$$

で定義されるビームの広がり幅 (rms 幅) を評価すると

$$w(z) = \left\{ 2\sigma_s^2 + \frac{2}{k^2} \left( \frac{1}{4\sigma_s^2} + \frac{1}{\sigma_\mu^2} \right) z^2 + \left[ \frac{4}{3} \pi^2 \int_0^\infty \kappa^3 \mathcal{Q}_n(\kappa) \, \mathrm{d}\kappa \right] z^3 \right\}^{1/2}$$
(10)

となる.

式 (10) から,大気擾乱媒質中を伝搬する GSM ビーム の空間的な強度広がりの起源を物理的に説明することがで きる.すなわち,式 (10) において, $z^2$ を含む項は回折に 伴うビーム広がりを, $z^3$ を含む項は大気の擾乱に伴うビ ーム広がりを表している.そのため,大気擾乱媒質のモデ ル $\phi_n$ を決定し,光源のコヒーレンス $\sigma_\mu$ を変化させて,  $z^2$ を含む項と $z^3$ を含む項の大小関係を伝搬距離zの関数 として比較することにより,部分的コヒーレント光ビーム (厳密には,GSM ビーム)の耐擾乱性を定量的に評価す ることができる.さらに,2章で議論するように,この式 から大気擾乱媒質中を伝搬する部分的コヒーレント光ビー ムの特徴的な振る舞いが明らかとなる.

なお、式(10)を一般化すると、大気擾乱媒質中を伝搬



図 2 自由空間および大気擾乱媒質中を伝搬した光ビームの断面の規格化強度分布. (a) レーザービーム, (b) 部分的コヒーレント光ビーム (GSM ビーム). この図の解析には,  $k=10^7 \text{ m}^{-1}$  ( $\lambda = 628 \text{ nm}$ ),  $C_n^2 = 10^{-14} \text{ m}^{-2/3}$  (ただし,自由空間では  $C_n^2 = 0$ ),  $\zeta_0 = 0.01 \text{ m}$ ,  $\sigma_s = 5 \text{ nm}$ ,  $\sigma_{\mu} = 2 \text{ nm}$ , z = 5000 m を使用した.

する任意の部分的コヒーレント光ビーム<sup>\*1</sup>の広がりは,  

$$w(z) = \sigma_I \left\{ 1 + \frac{z^2}{z_R^2} + \frac{1}{\sigma_I^2} \left[ \frac{4}{3} \pi^2 \int_0^\infty \kappa^3 \Phi_n(\kappa) d\kappa \right] z^3 \right\}^{1/2}$$
(11)

で与えられることが示されている<sup>5)\*2</sup>.ここで、 $\sigma_I$ は光源 強度のrms幅(式(9)の定義参照)を、 $z_R$ はレーリー長 (ビームの断面積が2倍に広がるまでに伝搬する距離)を 表す.

#### 1.2 数 值 例

部分的コヒーレント光ビームの耐擾乱性を示す数値例と して、大気擾乱媒質中を伝搬するレーザービームと部分的 コヒーレント光ビームの断面強度を比較する。そのための 準備として、式(7)で与えられる部分的コヒーレント光 ビームの強度を、空間的にコヒーレントなレーザービーム が自由空間を伝搬した際に得られる光軸上の強度(式(7) を、 $\rho=0$ 、 $\sigma_n=0$ 、 $\sigma_{\mu}\to\infty$ の条件で評価)で規格化する。 さらに、大気擾乱媒質のモデルとして Tatarskii スペクト ル

$$\boldsymbol{\Phi}_{n}(\boldsymbol{\varkappa}) = 0.033 C_{n}^{2} \boldsymbol{\varkappa}^{-11/3} \exp\left(-\frac{\boldsymbol{\varkappa}^{2}}{\boldsymbol{\varkappa}_{m}^{2}}\right)$$
(12)

を仮定する.ここで、 $C_n^2$ は大気の屈折率ゆらぎの構造定数であり、 $\kappa_m = 5.92/l_0$  ( $l_0$ :大気ゆらぎの内側のスケール (inner scale)) である。構造定数 $C_n^2$ の値は、大気ゆらぎのない自由空間では $C_n^2 = 0$ となるが、一般に地表付近では、 $10^{-13}$  m<sup>-2/3</sup>(強いゆらぎ)~ $10^{-17}$  m<sup>-2/3</sup>(弱いゆらぎ)の範囲をとる<sup>13)</sup>.

結果の一例として、上記の方法で評価されるビーム断面 の規格化強度を図2に示す。図より、空間的にコヒーレン トなレーザービーム ( $\sigma_{\mu} \rightarrow \infty$ に相当)が大気擾乱媒質中 を伝搬すると、その強度は自由空間を伝搬する場合に比べ てかなり低下し、かつビーム断面の強度が空間的に広がる 様子が明らかである (図2(a)参照).一方、部分的コヒ ーレント光ビームについては、大気擾乱媒質中でも自由空 間中でも、ビーム断面の強度分布はあまり変化しないこと がわかる (図2(b)参照).

#### 2. 新しい定理

1章の議論から,GSM 光源から放射された部分的コヒ ーレント光ビーム (GSM ビーム)は、大気擾乱媒質中を 伝搬する過程で回折と擾乱の影響を受けて空間的に広が り、その広がり幅は式(10)で与えられることが明らかと なった。この式から、比較的単純でありかつ実用的に重要 な2つの定理が導出される<sup>14)\*3</sup>.

#### 2.1 光ビームの長距離伝搬

伝搬距離 *z* が十分に大きい場合には,一般に 1≪*z*<sup>2</sup>≪*z*<sup>3</sup> が成立する.この関係を式 (10) に適用すると,以下の定 理が導出される.

【定理1】 大気擾乱媒質中を長距離伝搬した GSM ビー ムの rms 広がり幅は、その入射光ビームの特性に依 存せず、常に

$$w_{\text{long}}(z) = \left[\frac{4}{3}\pi^2 \int_0^\infty \kappa^3 \Phi_n(\kappa) \,\mathrm{d}\kappa\right]^{1/2} z^{3/2} \quad (13)$$

<sup>\*1</sup> 厳密には、光源の空間的相関が 2 点の差にのみ依存するシェルモデル光源から放射された部分的コヒーレント光ビーム.

<sup>\*</sup>² 文献 5)の式 (29) の係数には誤りがある.正しくは,2π²/3 ではなく 4π²/3 である.

<sup>\*\*3</sup> 文献 14) では、GSM 光源の強度広がり幅の定義が本稿と異なるため、結果の数学的表現式の一部が本稿と異なることに注意する必要がある。



図3 伝搬に伴うGSMビームの広がり幅の比G(z) = $w(z)/w_F(z)$  (w(z):大気擾乱媒質中を伝搬するGSMビームの広がり幅).  $u_F(z)$ :自由空間を伝搬するGSMビームの広がり幅).  $a:\sigma_{\mu}\rightarrow\infty$  ( $\nu$ -ザービーム),  $b:\sigma_{\mu}=2$  cm,  $c:\sigma_{\mu}=2$  mm,  $d:\sigma_{\mu}=0.2$  mm. その他の共通パラメーターとして,  $k=10^7$  m<sup>-1</sup> ( $\lambda=628$  nm),  $C_n^2=10^{-14}$  m<sup>-2/3</sup> (ただし,自由空間では $C_n^2=0$ ),  $b_0=0.01$  m,  $\sigma_s=5$  mm を使用した.

で与えられる.

この定理に記されている「長距離」の具体的な数値を評価しよう.式(13)が成り立つためには,式(10)において 右辺の第1項が第3項に比べて無視できるほど小さい条件

$$z \gg \left\{ 2\sigma_{3}^{2} \left[ \frac{4}{3} \pi^{2} \int_{0}^{\infty} \kappa^{3} \varPhi_{n}(\kappa) \, \mathrm{d}\kappa \right]^{-1} \right\}^{1/3} \equiv z_{1}$$
(14)

と,右辺の第2項が第3項に比べて無視できるほど小さい 条件

$$z \gg \frac{2}{k^2} \left( \frac{1}{4\sigma_s^2} + \frac{1}{\sigma_\mu^2} \right) \left[ \frac{4}{3} \pi^2 \int_0^\infty \kappa^3 \Phi_n(\kappa) \,\mathrm{d}\kappa \right]^{-1} \equiv z_2 \quad (15)$$

を同時に満たす必要がある.式(12)を式(14)と式(15) に代入して整理すると、それぞれ

$$z_1 = \left(\frac{\sigma_s^2 l_0^{1/3}}{1.093 C_n^2}\right)^{1/3}, \quad z_2 = \frac{l_0^{1/3}}{1.093 C_n^2 k^2} \left(\frac{1}{4\sigma_s^2} + \frac{1}{\sigma_\mu^2}\right) \quad (16)$$

を得る.具体的な数値例として,図2と同様のパラメーターを使用すると、それぞれ $z \gg z_1 \approx 790$  m、 $z \gg z_2 \approx 51.2$  km となる.すなわち、この例の場合、定理1は伝搬距離が51 km よりも十分に長い場合に成立する.

式(13)には、光源の強度分布と同時にコヒーレンスの 情報も含まれていないことから、大気擾乱媒質中を伝搬す る光ビームは、伝搬距離が十分に長ければ入射光ビームの 空間的コヒーレンスに依存しないことが明らかである。そ の結果、光ビームを大気中で十分に長く伝搬させる目的に 限っては、空間的にコヒーレントな高品質のレーザービー ムを使用する必要はなく、部分的にコヒーレントな低品質 のレーザービームでも、独立した複数のレーザーの重ね合 わせでも全く同じ効果が得られることになる。

### 2.2 光ビームの安定性

図2の結果をより定量的に理解するために、大気擾乱媒 質中を伝搬するGSMビームの広がり幅w(z)と自由空 間を伝搬するGSMビームの広がり幅 $w_F(z)$ の比 $W(z)/w_F(z)$ を評価する。このとき、自由空間では大気ゆ らぎの構造定数が $C_n^2=0$ となることを考慮すると、式 (10)から

$$G(z) \equiv \frac{w(z)}{w_F(z)} = \left\{ 2\sigma_s^2 + \frac{2}{k^2} \left( \frac{1}{4\sigma_s^2} + \frac{1}{\sigma_\mu^2} \right) z^2 + \left[ \frac{4}{3} \pi^2 \int_0^\infty \kappa^3 \varphi_n(\kappa) \, \mathrm{d}\kappa \right] z^3 \right\}^{1/2} / \left\{ 2\sigma_s^2 + \frac{2}{k^2} \left( \frac{1}{4\sigma_s^2} + \frac{1}{\sigma_\mu^2} \right) z^2 \right\}^{1/2}$$
(17)

が導出される.この式において光源の空間的コヒーレンス σμが小さくなると、ビーム広がりの比*G*(z)も小さくな り、その値は最終的に1に近づくことがわかる.その結 果、以下の定理が導出される.

【定理 2】 大気擾乱媒質中を伝搬する GSM ビームの広 がり幅 w(z) と自由空間を伝搬する GSM ビームの 広がり幅  $w_F(z)$  の比  $w(z)/w_F(z) \equiv G(z)$  は,入射 光ビームの空間的コヒーレンスが劣化するほど(つま り, $\sigma_{\mu}$  が小さくなるほど)小さくなり,その値は最 終的に1に近づく.すなわち,空間的にインコヒーレ ントに近い光源から放射された部分的コヒーレント光 ビームほど安定しており,大気擾乱媒質中でもそのビ ーム広がりは自由空間を伝搬する場合とほぼ同じとな る.

この定理によると、安定した光ビームでは光源の空間的 コヒーレンス σ<sup>μ</sup> がきわめて小さな値をとることになる。 しかし、光源から光ビーム(鋭い指向性をもち伝搬する 光)が放射される条件として、関係式

$$\frac{1}{2\sigma_s^2} + \frac{2}{\sigma_\mu^2} \ll k^2 \tag{18}$$

を満たす必要がある11)。

数値例として,式(17) に基づき,伝搬に伴うビームの 広がり幅の比G(z)の変化を図3に示す.図より,光源 が空間的にインコヒーレントに近づくほど,伝搬に伴う G(z)の変化が少なく,その値はほぼ1を保ち続けること がわかる.すなわち,安定した光ビームの伝搬が実現され る.

# 3. 部分的コヒーレント光ビームの耐擾乱性のモード 解析

大気擾乱媒質中を伝搬する部分的コヒーレント光ビーム

の耐擾乱性をさらに詳しく調べるために,伝搬に伴う光ビ ームの広がりをコヒーレント・モード展開を利用して解析 する<sup>12)</sup>.ここで,コヒーレント・モードとは,本来は空間-周波数領域の相関関数である相互スペクトル密度を厳密に 定義するために導入された概念である<sup>15)</sup>.しかし,多くの 部分的コヒーレント光はコヒーレント・モードで展開で き,さらにこれらのモードは空間的に完全にコヒーレント でありかつ互いに相関がないことから,この概念を部分的 コヒーレント光ビームの伝搬<sup>16,17)</sup>や逆問題<sup>18)</sup>の解析に適 用すると効果的であることが広く認識されるようになっ た.

ここでは前章までと同様に, GSM 光源から放射され たGSM ビームを大気擾乱媒質に入射し, 伝搬距離 2 の位 置で観測する問題を考える. ただし,本章の議論では, GSM 光源をコヒーレント・モードに展開し,大気擾乱媒 質中を伝搬する個々のモードの広がりを, 拡張型ホイヘン ス・フレネルの原理に基づき解析する.

式(4)~(6)で定義される GSM 光源をコヒーレント・ モード展開すると、その相互スペクトル密度は

$$W^{(0)}(\boldsymbol{\rho}_1, \, \boldsymbol{\rho}_2, \, \omega) = \sum_{m} \sum_{n} \alpha_{mn}(\omega) \, \boldsymbol{\phi}_{mn}^{(0)*}(\boldsymbol{\rho}_1, \, \omega) \, \boldsymbol{\phi}_{mn}^{(0)}(\boldsymbol{\rho}_2, \, \omega)$$
(19)

と記述される<sup>16,17)</sup>.ここで,  $\alpha_{mn}(\omega) = A \left( \frac{\pi}{a+b+\sqrt{a^2+2ab}} \right) \left( \frac{b}{a+b+\sqrt{a^2+2ab}} \right)^{m+}$  $a = \frac{1}{4\sigma^2}, \quad b = \frac{1}{2\sigma^2_{\pi}}$  (20)

であり、 $m \ge n$ はモード番号を表す。また、コヒーレント・モード  $d_{m}^{(0)}$ は

$$\phi_{mn}^{(0)}(\boldsymbol{\rho},\omega) \equiv \phi^{(0)}(x,y,\omega) = B_{mn}H_m\left(\frac{\sqrt{2}}{d}x\right)H_n\left(\frac{\sqrt{2}}{d}y\right)\exp\left(-\frac{x^2+y^2}{d^2}\right)$$
(21)

で与えられ ( $H_n$ ,  $H_m$ :エルミート多項式),

$$B_{mn} = \frac{1}{d\sqrt{\pi 2^{m+n-1}m!n!}}, \quad d = \frac{1}{(a^2 + 2ab)^{1/4}} \quad (22)$$

である。以上の結果から、空間的に部分的コヒーレントな GSM 光源は、空間的に完全にコヒーレントでありかつ互 いに独立なエルミート・ガウス関数(モード)の重ね合わ せで記述されることがわかる。

式 (21) で与えられるモード関数  $\phi$ <sup>(m)</sup> を式 (2)の  $U^{(0)}$  に代入し、式 (3) を利用すると、大気擾乱媒質を伝搬した各モードの強度分布が導出される。この強度分布の広がりを式 (9)に基づき評価すると、最終的には、各モードの強度広がり幅 (rms 幅)として

$$w_{mn}(z) = \left\{ \left(\frac{m+n+1}{2}\right) d^2 \left[ 1 + \left(\frac{2}{kd^2}\right)^2 z^2 \right] \right\}$$



図4 大気擾乱媒質中を伝搬する各モードの相対的広がり 幅.a:m=n=0, b:m=n=1, c:m=n=2, d:m=n=4, e:自由空間におけるすべてのモード。この図の解析 には, $k=10^7 \text{ m}^{-1}$  ( $\lambda=628 \text{ nm}$ ),  $C_n^2=10^{-14} \text{ m}^{-2/3}$  (ただし, 自由空間では $C_n^2=0$ ), b=0.01 m, d=0.01 mを使用した.

$$+\left[\frac{4}{3}\pi^{2}\int_{0}^{\infty}\kappa^{3}\varPhi(\kappa)\,\mathrm{d}\kappa\right]z^{3}\right]^{1/2}$$
(23)

を得る<sup>12)</sup>. 各モードの相対的な広がりを評価するために, 式 (23) で与えられる伝搬距離 *z* での広がり幅  $w_{mn}(z)$  を 伝搬前 (*z*=0) の広がり幅  $w_{mn}(0)$  で規格化すると,

$$w_{mn}^{N}(z) \equiv \frac{w_{mn}(z)}{w_{mn}(0)} = \left\{ 1 + \left(\frac{2}{kd^{2}}\right)^{2} z^{2} + \left[\frac{8\pi^{2}}{3(m+n+1)d^{2}} \int_{0}^{\infty} \kappa^{3} \Phi(\kappa) d\kappa \right] z^{3} \right\}^{1/2}$$
(24)

となる.

最初に,式(24)に基づき,自由空間を伝搬する各モードの相対的な広がりを解析すると

$$w_{mn}^{N}(z)|_{FS} = \sqrt{1 + \left(\frac{2}{kd^{2}}\right)^{2} z^{2}}$$
 (25)

を得る.この式は、その右辺にモード番号(m,n)が含 まれていないことから、自由空間を伝搬する各モードの相 対的な広がりはすべて同じであることを表している.次 に、1章と同様に大気のモデルとして Tatarskii スペクト ルを仮定して、大気擾乱媒質中を伝搬する各モードの相対 的広がりを評価する.その結果を図4に示す.図より、高 次のモードほど、大気の擾乱による強度の相対的広がりが 小さくなる様子が確認される.モード展開の理論による と、高次モードが増加するほど、それらの重ね合わせによ って形成される場の空間的コヒーレンスは低下することが 知られている.その結果、空間的コヒーレンスが悪い光ビ ームほどそこに含まれる高次モードが多くなるため、低次 のモードが多く含まれる空間的コヒーレンスの高い光ビー ムに比べて,最終的なビームの相対的広がりが小さくなる。すなわち,高次モードが多く含まれる空間的にインコ ヒーレントに近い光ビームほど,ビームの断面強度が相対 的に広がりにくく,耐擾乱性にすぐれているといえる。

本稿では、大気擾乱媒質中を伝搬する部分的コヒーレン ト光ビームの諸特性を、現代的なコヒーレンス理論に基づ き解析した。特に、大気擾乱媒質中を伝搬する部分的コヒ ーレント光ビームが、空間的にコヒーレントなレーザービ ームに比べて耐擾乱性にすぐれていることを、いくつかの 異なる視点から理論的に示してきた。これらの結果から、 今後はリモートセンシングや空間光通信等の応用分野にお いて、部分的コヒーレント光ビームの積極的な活用が期待 されよう。

一般に、大気の屈折率ゆらぎの空間的スケールは光の波 長に比べて十分に大きいため、散乱に伴う偏光状態の変化 を無視することができる。そのため、本稿では偏光を考慮 しないスカラー理論に基づく解析を行った。しかし、最近 構築されたコヒーレンスと偏光の統一理論<sup>19)</sup>に基づき波 動場のベクトル性を考慮した理論解析を行うと、大気擾乱 媒質中を伝搬する部分的コヒーレント光ビームの偏光状態 が興味深い振る舞いを示すことがわかっている<sup>20,21)</sup>.本稿 で触れることのできなかったこれらの研究を含めて、コヒ ーレンスと偏光を統一的に取り扱う理論的研究は、現在、 その理論体系の整備とあわせて積極的に推進されてい る\*4.

## 文 献

- 1) J. W. Strohbehn ed.: Laser Beam Propagation in the Atmosphere (Springer-Verlag, New York, 1978).
- L. C. Andrews and R. L. Phillips: Laser Beam Propagation through Random Media (SPIE Press, Bellingham, 1998).
- J. Wu: "Propagation of a Gaussian-Schell beam through turbulent media," J. Mod. Opt., 37 (1990) 671-684.
- J. Wu and A. D. Boardman: "Coherence length of a Gaussian-Schell beam and atmospheric turbulence," J. Mod. Opt., 38 (1991) 1355–1363.
- G. Gbur and E. Wolf: "Spreading of partially coherent beams in random media," J. Opt. Soc. Am. A, 19 (2002) 1592-1598.
- S. A. Ponomarenko, J.-J. Greffet and E. Wolf: "The diffusion of partially coherent beams in turbulent media," Opt. Commun., 208 (2002) 1–8.
- 7) A. Ishimaru: Wave Propagation and Scattering in Random

Media (IEEE Press, New York, 1997) Part IV.

- R. L. Fante: "Wave propagation in random media: A systems approach," *Progress in Optics XXII*, ed. E. Wolf (Elsevier, Amsterdam, 1985) pp. 341–398.
- L. C. Andrews and R. L. Phillips: Laser Beam Propagation through Random Media (SPIE Press, Bellingham, 1998) pp. 355–357.
- L. C. Andrews and R. L. Phillips: Laser Beam Propagation through Random Media (SPIE Press, Bellingham, 1998) pp. 136–137.
- L. Mandel and E. Wolf: *Optical Coherence and Quantum Optics* (Cambridge University Press, Cambridge, 1995) pp. 276–287.
- 12) T. Shirai, A. Dogariu and E. Wolf: "Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence," J. Opt. Soc. Am. A, 20 (2003) 1094-1102.
- L. C. Andrews and R. L. Phillips: Laser Beam Propagation through Random Media (SPIE Press, Bellingham, 1998) pp. 43-64.
- 14) M. Salem, T. Shirai, A. Dogariu and E. Wolf: "Longdistance propagation of partially coherent beams through atmospheric turbulence," Opt. Commun., 216 (2003) 261– 265.
- L. Mandel and E. Wolf: *Optical Coherence and Quantum Optics* (Cambridge University Press, Cambridge, 1995), pp. 213–223.
- A. Starikov and E. Wolf: "Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields," J. Opt. Soc. Am., 72 (1982) 923–928.
- F. Gori: "Mode propagation of the field generated by Collett-Wolf Schell-model sources," Opt. Commun., 46 (1983) 149-154.
- T. Habashy, A. T. Friberg and E. Wolf: "Application of the coherent-mode representation to a class of inverse source problems," Inverse Probl., 13 (1997) 47-61.
- E. Wolf: "Unified theory of coherence and polarization of random electromagnetic beams," Phys. Lett. A, **312** (2003) 263-267.
- 20) O. Korotkova, M. Salem and E. Wolf: "The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence," Opt. Commun., 233 (2004) 225-230.
- 21) M. Salem, O. Korotkova, A. Dogariu and E. Wolf: "Polarization changes in partially coherent electromagnetic beams propagating through atmospheric turbulence," Wave. Random Media, 14 (2004) 513–523.
- 22) E. Wolf: "Comment on "Complete electromagnetic coherence in the space-frequency domain"," Opt. Lett., 29 (2004) 1712.
- 23) T. Setälä, J. Tervo and A. T. Friberg: "Reply to comment on "Complete electromagnetic coherence in the spacefrequency domain"," Opt. Lett., 29 (2004) 1713-1714.

(2005年6月15日受理)

<sup>\*\*</sup> やや余談となるが,電磁場(ベクトル波動場)のコヒーレンス度の定義に関する Wolf 教授と Friberg 教授の論争は興味深い.例えば,文献 22,23)参照.