Comb-like profiled fiber を用いる高繰り返し パルス光源

高坂 繁弘*1,*2,*3•小関 泰之*1•井 上 崇*2•並 木 周*2,[†]

High-Repetition-Rate Optical Pulse Sources Using Comb-Like Profiled Fiber

Shigehiro TAKASAKA*1,*2,*3, Yasuyuki OZEKI*1, Takashi INOUE*2 and Shu NAMIKI*2,†

We present our recent progress on high-repetition-rate short pulse sources based on "comb-like profiled fiber (CPF)." CPF is a pulse compression fiber using highly nonlinear fiber, and has unique features such as short fiber length, wide wavelength tunability, design flexibility, and applicability to high-repetition rate pulse generation. In this article, we summarize the features of CPF, and show some examples of CPF-based pulse sources: (i) CL-band wavelength tunable optical pulse generation at a repetition rate of 40 GHz, (ii) nearly exact conversion of a 160-GHz optical beat signal to a soliton train, and (iii) 1-THz repetition-rate optical pulse train generation. In addition, as a seed pulse source at repetition rates higher than 100 GHz, we introduce an externally-synchronized 160-GHz optical beat source based on an optical phase-locked loop.

Key words: high-repetition-rate optical pulse source, comb-like profiled fiber, highly nonlinear fiber, optical phase-locked loop

超高速光信号処理技術の研究が盛んに進められている。 例えば、光時分割多重(OTDM)方式に基づく100 Gbit/s 超の高速信号発生や多重分離¹⁾、劣化した光信号を電気信 号に変換することなく再生する全光再生中継器²⁾、あるい はアナログ光信号を光のままディジタル光信号に変換する 全光 A/D 変換器³⁾などが提案されている。これらの技術 における重要な要素技術として、時間幅が数ピコ秒以下の 高繰り返し光クロックパルス列の発生が挙げられる。

安定性にすぐれた高繰り返しパルス光源を実現する一手 法として、図1(a)に示すような、光パルス圧縮ファイバ ーと種パルス光源を組み合わせた構成がある。筆者らは、 独自の光パルス圧縮ファイバーとして comb-like profiled fiber (CPF)の研究と開発を行ってきた⁴⁻¹¹⁾. CPF は、図 2 に示すように、高非線形ファイバー(highly nonlinear fiber; HNLF)とシングルモードファイバー(single-mode fiber; SMF)を交互に接続したファイバーである。詳細に ついては後述するが、従来のパルス圧縮ファイバーと比較 すると,ファイバーの短尺性,広帯域波長可変性,超高繰り返しパルス発生への適用性等,CPF はさまざまな特徴 を有する.

一方,筆者らは,超高繰り返し領域における種パルス光 源についても検討を進めている。繰り返し周波数が40 GHz程度以下であれば,光強度変調器によって種パルス 光を発生できる(図1(b)).一方,40GHzよりも高い繰 り返し周波数においては,電気回路の速度制限により光強 度変調器の動作は難しい。そこで,電気回路の速度制限を 受けない構成として,図1(c)に示すビート光源を開発し ている。ビート光は、2台の半導体レーザーの出力光を合 波することによって得られ、その繰り返し周波数はレーザ ーの光周波数差に一致する。したがって、レーザーの発振 波長を適切に制御することにより、繰り返し周波数が100 GHzを超える種パルス光源を容易に実現することができ る。なお、この構成において外部同期を実現するために は、後述する光位相同期回路が必要である。

^{*1}科学技術振興機構さきがけ(〒332-0012 川口市本町 4-1-8)

^{*&}lt;sup>2</sup> 古河電気工業株式会社ファイテルフォトニクス研究所(〒290-8555 市原市八幡海岸通6番地) *³ E-mail: shigehiro@ch.furukawa.co.jp †現所属:産業技術総合研究所光技術研究部門(〒305-8568 つくば市梅園1-1-1 中央第2)

図1 光パルス圧縮ファイバーを用いた高繰り返しパルス光 源の構成 (a) と種パルス光源の構成 (b), (c).

本稿では、CPF を用いた高繰り返しパルス光源につい ての最近のトピックスを紹介する.以下に本稿の構成を 示す.最初にCPF の動作原理と特徴について述べ、続 いてCPF を用いたパルス圧縮の実例として、CLバンド (1530~1610 nm) 波長可変 40 GHz 繰り返しパルス列発 生,160 GHz 繰り返し高品質ソリトンパルス列発生、そ して1 THz 繰り返し光パルス列発生についての実験結果 を示す.さらに、光位相同期回路を用いた外部同期ビート 光発生の実験結果を示す.

1. CPF の動作原理と特徴

CPF における基本的な光パルス圧縮動作は、comb-like dispersion profiled fiber, CDPF¹²⁾ におけるそれと同様で ある. CDPF は Chernikov らによって提案された圧縮フ ァイバーであり,分散シフトファイバー(dispersion shifted fiber, DSF) と SMF を交互に接続したものである。表 1 に示すように、DSF の分散値が小さく、SMF の分散値 が大きいのに対して、両ファイバーの非線形性は同程度で ある。光パルスが CDPF 中を伝搬すると、光パルスは SMF と DSF の長さに応じた「平均の」分散効果および 非線形効果を受けることになる。したがって、各ファイバ ーの長さを適切に設計し、平均的な分散効果を長手方向に 制御することで、分散減少ファイバー¹⁴⁾ と同様のファイ バー特性を模擬できる。それゆえ、断熱ソリトン圧縮効果 によってパルスが圧縮される。

CPF では, DSF のかわりに HNLF を使用する. ここ でも, CPF を伝搬するパルスは SMF と HNLF の「平均

表1 HNLF, SMF, DSF の特性 (典型値).

Parameters (@1550 nm)	HNLF	SMF	DSF
分散 (ps•nm ⁻¹ •km ⁻¹)	$-1 \sim 1$	16.5	0.0
分散スロープ (ps•nm ⁻² •km ⁻¹)	0.013^{13}	0.06	0.07
非線形定数(W ⁻¹ •km ⁻¹)	25.1^{13}	1.3	2.7
伝送損失(dB•km ⁻¹)	$1.16^{13)}$	0.20	0.21
ゼロ分散波長 (nm)	$1500{\sim}1600$	1310	1550
SMF との融着接続損失 (dB, Typical)	$< 0.1^{13)}$	0.02	0.04

の」効果を受けながら圧縮される.ここで,表1に示すように,HNLFの非線形性がDSFと比較して約1桁大きく,分散スロープが約1桁小さい点に注目されたい.これらHNLFの特徴に起因して,CPFはCDPFのみならず,分散減少ファイバーやstep-like dispersion-profiled fiber (SDPF)¹⁵⁾など,断熱ソリトン圧縮を行う従来のパルス 圧縮ファイバーよりもすぐれた特性を有する.以下に,CPFの特徴を列挙する.

第1に、HNLFの高非線形性により、ファイバーの短 尺化、もしくは低パワー動作が可能である。したがって、 CPF はコンパクトなモジュール化が容易であり、光源全 体の消費電力も小さい。

第2に、CPF は設計が容易でかつ製造性が高い。前述 のように、CDPF および CPF はファイバー長の調整のみ で圧縮特性を調整でき、設計の柔軟性が高い。したがっ て、分散減少ファイバーのように特殊なファイバー製造技 術を必要としない。また、CPF を CDPF と比較すると、 HNLF の短尺性のために、HNLF 中の分散効果は無視で き、一方、HNLF の非線形性と比較して SMF 中の非線 形性は無視できる。したがって、HNLF と SMF のファ イバー長に応じて、パルスに及ぼす非線形性と分散性の効 果をほぼ独立に調整できる⁵⁾. 筆者らは、この特徴を活用 し、さまざまな CPF の設計法を提案している⁷⁻¹⁰.

第3に、CPF は広帯域な波長可変動作に有利である. 分散減少ファイバーや SDPF など従来の圧縮ファイバー では、光パルスの圧縮に伴って長手方向に分散値を低減す る必要があった。このため、ファイバーの出力端に近くな ると分散スロープ等の高次分散効果が発現しやすく、これ が圧縮特性の波長依存性を生じる一要因であった。一方、 CPF では HNLF を使用することでファイバーの短尺化 が可能であり、しかもスロープ値そのものが小さいこと から、HNLFにおける分散スロープの影響はきわめて小 さく抑えられている。実際、筆者らはすでに、Cバンド (1530~1560 nm) 波長可変 CPF パルス圧縮動作を実現し ている⁶⁾.

第4に, CPF では誘導ブリルアン散乱 (stimulated Bril-

louin scattering; SBS)の抑圧が容易である。SBS が発生 すると、出力パルスの特性が劣化する。SBS は繰り返し 周波数の高い光パルスを圧縮する際に顕著に発生する。し かしながら、SBS は伝送路中にアイソレーターを挿入す ることで抑圧できることが知られており¹⁶, CPF にもこ の方法を適用することが可能である⁵.

以上のように, CPF はすぐれた特徴を有し, 高繰り返 し光パルス列発生において非常に有効な手段である, とい える.

2. CPF を用いた光パルス圧縮の実例

CPF の特徴を活用することで、従来の光パルス圧縮フ ァイバーでは実現できなかったさまざまな光パルス圧縮特 性が実現する.ここでは、その特徴を示す例として、40 GHz 繰り返し広帯域波長可変パルス圧縮,160 GHz 繰り 返し高品質ソリトンパルス列発生、そして1 THz 繰り返 しパルス発生の実験結果を示す.

2.1 40 GHz 繰り返し CL バンド広帯域波長可変パルス 圧縮

CL バンドをカバーする, 1530 nm から 1610 nm の波長 帯において, 繰り返し周波数が 40 GHz, パルス幅が 2 ps 以下の sech² パルス列を発生することを目的として, CPF を設計して波長可変パルス圧縮実験を行った結果を示 す⁷.

2.1.1 CPF の設計

CPF への入力パルスは、ニオブ酸リチウム強度変調器 (LNM) より出力される,繰り返し周波数が40GHz,パ ルス幅が8.5 psのReturn-to-Zeroパルス列とする。この 幅を1.8 ps に圧縮するために, HNLF と SMF の組が6 段で構成された CPF を設計した。6 段 CPF のファイバー 非線形定数と分散値の長手方向の値を図3に示す。CPF の構成は前2段と後4段で設計指針が異なっている。前2 段は入力パルスの波形を効率的に sech² 型へと変換するソ リトンコンバーターとして設計し,チャープフリーで幅が 3.9 ps の sech² 型パルスを出力する。一方,後4 段は stationary rescaled pulse (SRP) の伝搬に基づいた設計を 行った^{8,9)}.1段あたりの圧縮率を1.21と設定すると,SRP の波形はほぼ sech²型として得られ、4段の CPF を用いる ことで、ソリトンコンバーターの出力パルスの時間幅3.9 psが 3.9/1.21⁴~1.8 ps に圧縮される. なお, SRP 伝搬に基 づいて設計された CPF に、波形が sech²型ではない LNM 出力パルスを直接入力すると、ペデスタル(非圧縮成分) が増大する可能性がある。そのため、CPFの前2段をソリ トンコンバーターとして設計することは、CPF 全体として

高品質なパルス圧縮を行ううえで有効である.

2.1.2 実験と結果

設計に基づいて作製した 1.8 km の CPF を用いて,パ ルス圧縮実験を行った。図4に実験構成を示す。LNM を 用いて波長可変光源(TLS)の出力光を強度変調し,40 GHz 繰り返しパルス列を発生する。光増幅器(EDFA)で 増幅後に,光フィルター(BPF)により自然放出光雑音 を除去する。可変光減衰器(VOA)で入力パルス列の平 均パワーを調整した後,CPF を伝搬させ,出力波形を測 定する。

中心波長が 1570 nm のときの出力波形を図 5 に示す. sech² 波形にほぼ一致する結果が得られた.また,波長を 1530 nm から 20 nm おきに 1610 nm まで変化させたとき のパルス幅,時間帯域幅積,そしてピーク・ペデスタル比 の値を図 6 に示す.ただし,各波長における入力平均パワ ーはそれぞれ 18.0, 18.5, 18.75, 19.5, 20.5 dBm である. 図 6 より,各波長においておよそ 1.8 ps のパルス幅と,お よそ 0.33 の時間帯域幅積が得られたことがわかる.

以上より,LNMより出力される40 GHz 繰り返し光パ ルス列に対して CPF を用いた圧縮を行うことで,CLバ ンドにわたる波長範囲で2 ps 以下の時間幅をもつ光パル スが発生できることを確認した。この光源の応用として は,OTDM による160 GHz 繰り返し信号の発生などが考 えられる。

2.2 160 GHz 繰り返し高品質ソリトンパルス列発生

前述のように、CPF は2種のファイバー長の調整のみ で任意のファイバー特性を模擬できる。この特徴を活用 し、緻密な設計を行うことによって、光パルスを高精度に 制御できることが期待される。ここでは、160 GHz ビー ト光を圧縮し、高いピーク・ペデスタル比を有するフェム ト秒ソリトンパルスを発生した例を紹介する¹⁰.

図4 実験構成. CPF: Comb-like profiled fiber, TLS: 波長可変光源, LNM: LN 変 調器, BPF: 帯域通過フィルター, VOA: 可変光減衰器, A.C.: 自己相関計, OSA: 光スペクトラムアナライザー, RZ: Return-to-Zero.

図5 中心波長 1570 nm のときの CPF 出力パルスの自己相関波形 (a) とスペクトル (b).

2.2.1 CPF の設計

まず、ビート光をソリトンパルスへ高精度に変換するフ ァイバーの設計を行った。一般に、光ファイバー中の光パ ルスの伝搬は、非線形シュレーディンガー方程式 $i(\partial U/\partial\xi) = \{d(\xi)/2\}\partial^2 U/\partial\tau^2 - |U|^2 U$ でよく表される。ただ し、U、を、d、τは規格化された光電界、距離、分散値、時間である。詳細については割愛するが、 $d(\xi)$ ををの多 項式で表し、繰り返し計算によって $d(\xi)$ を最適化し た¹⁰⁾.最適化の結果を図7に示す。図7(a)が最適化され た分散プロファイルである。この分散プロファイルを有す

図6 パルス幅,時間帯域幅積 (TBP), ピーク・ペデスタ ル比の波長依存性.

るファイバーを使用して得られるパルスの強度波形を図7 (b) に示す.パルスのピーク強度に比較して,不要成分が 60 dB 程度抑圧されることがわかる.また,図7(c) に示 すスペクトルはソリトン波形によくフィットし,スペクト ルの歪みが発生しない.

2.2.2 実験と結果

上記設計に基づいて CPF を作製し, ビート光を高精度 にソリトンパルスに変換する実験を行った.図8に実験構 成を示す.2台の DFB-LD が出力する連続光を合波・光 増幅して得られたビート光を CPF に入力した.ビート光 の繰り返し周波数および平均パワーは160 GHz および 500 mW である.CPF は40 組の HNLF と SMF から構 成され,総長は700 m 程度である.各ファイバーの長さ は,CPF が図7(a)の分散プロファイルを模擬するよう に決定した.

CPF 出力パルスの測定結果を図9に示す。自己相関波 形は、半値全幅 324 fs の sech² パルスを仮定するフィッテ ィング曲線に合致する。ピーク・ペデスタル比は 21 dB であり、設計値よりも低い値が得られているが、この値は 自己相関計のダイナミックレンジにより制限されているも のと考えている。一方、スペクトルは帯域幅 1 THz の sech² 曲線によくフィットし、スペクトルの歪みが発生し

図7 (a) ビート・ソリトン変換分散プロファイルの最適化結果. (b) 変換後の強度波形. (c) 変換後のスペクト ル. *ξ*, *τ*, *d*, *U* はそれぞれ規格化された距離,時間,分散,光電界.

ないことがわかる。なお、時間帯域幅積は 0.32 である。

以上の結果から、CPF の設計自由度を活用し、緻密な 設計を行うことによって、高純度かつピーク・ペデスタル 比の高いソリトン列の発生が可能となることが確認され た.

2.3 1THz 繰り返し光パルス列発生

HNLF の高非線形性を活用すると、パルス圧縮に必要 なパルスエネルギーを低減できる.このため、CPF は高 繰り返しパルスの圧縮時においても平均光パワーを低く抑 えることができるため、高繰り返しパルスの発生に有利で ある.このデモンストレーションとして、1 THz 繰り返 し光パルス列の発生実験を行ったので紹介する¹¹⁾.

実験構成は図8と同様であるが、以下の変更を行っている. ビート光の周波数および平均パワーをそれぞれ1

図10 CPF 出力パルスの自己相関波形(a) とスペクトル(b).

THz および 1.25 W に設定した.また,CPF は 15 組の HNLF と SMF から構成され,総長は 115 m である.図 10 に光パルス列の測定結果を示す.自己相関波形からは

図9 CPF 出力ソリトンパルスの自己相関波形(a) とスペクトル(b).

図11 OPLL実験構成. TIA:電流増幅器, PC:偏波制御器, EDFA:エルビウム添加光ファイバー増幅器.

繰り返し周波数1THz,時間幅97fsの光パルス列がみて とれる.また,ピーク・ペデスタル比は10dB以上,光 S/N比は52dB,時間帯域幅積は0.34であり,高品質な パルスが得られている.なお,HNLFの高次分散の影響 によってスペクトルが若干非対称化しているが,自己相関 波形の著しい劣化はみられていない.

これらの結果から、CPF がテラヘルツ繰り返し周波数 においても、サブ 100 フェムト秒までの圧縮能力を有する ことが確認された。

3. 外部信号に同期した 160 GHz ビート光の発生

ビート光源は 100 GHz を超える高繰り返しパルス列を 発生できる利点をもつが,外部同期を実現するためには, ビート光の位相を制御する回路が必要となる.ここでは, そのような回路として筆者らが開発してきた光位相同期回

図 13 160 GHz ビート光の SSB 位相雑音スペクトル.太 線:OPLL 動作時の測定値,点線:無制御時の計算値,実 線:実験条件から計算される予測値.

路(optical phase-locked loop: OPLL)を紹介する¹⁷⁾. 3.1 **OPLLの構成**

3.1 OPLLの構成 OPIIの構成を図11

OPLLの構成を図11に示す.マスターLDとスレーブ LDによりビート光源を構成する.ビート光と参照パルス 光のタイミングを比較するため、両者を合波してSi-APD に入力し、二光子吸収(TPA)電流をタイミング誤差信 号として検出する.この誤差信号がループフィルターを介 してスレーブLDにフィードバックされることで、ビート 光のタイミングが参照信号に同期する.OPLLのループ 遅延時間およびループ帯域はそれぞれ6nsおよび20 MHzである.なお、スレーブLDとして3電極DFBレ ーザーを使用することで、広帯域なFM応答性(100 MHz 以上)と狭線幅性(250 kHz)を実現している.また、TPA 効率を高めるためSi-APD上のスポットサイズを4.3 μm に絞った.

3.2 実験と結果

OPLLによる160 GHz ビート光の外部同期実験を行った.参照光として40 GHz 繰り返し1 ps 光パルス列を用いた.Si-APDへの入力光のスペクトルを図12 に示す. ビート光と参照パルス光が入力されていることがわかる. 各信号の光パワーは,マスター LD 50 mW,スレーブ LD 3 mW,参照パルス光 220 mW である.OPLL 動作時の 160 GHz ビート光の SSB 位相雑音スペクトルを図13 に 示す.OPLL 動作により位相雑音が抑制されることを確 認した.これは,160 GHz ビート光の外部同期に成功し たことを示している.なお,タイミングジッターは実効値 で 291 fs であった.この値は実験条件から計算される予 測値にほぼ一致しており,理論通りの動作が実現されてい る.系の改善により,実効値で 90 fs 以下のタイミングジ ッターを実現できることが期待される.

本 OPLL の出力周波数は、ビート光源を構成する2台 の DFB-LD の出力光の周波数差で設定できる。また、入 出力部分に光学デバイスを用いているため、動作特性は繰 り返し周波数によらない。これらの特徴から、本 OPLL はテラヘルツに及ぶような高い繰り返し周波数においても 動作することが期待される。

高繰り返しパルス光源を実現するための光パルス圧縮フ ァイバーとして、CPFの特徴を紹介した。また、CPFを 用いたパルス圧縮を行い、1530~1610 nmの波長範囲で2 ps以下の40 GHz 繰り返しパルス列発生、160 GHz 繰り 返し高品質ソリトン列発生、そして1 THz 繰り返し光パ ルス列発生の実験結果を示した。最後に、OPLLを用い ることで外部信号に同期した160 GHz ビート光を発生す る実験結果を示した。

これらの結果から, CPF を用いた高繰り返しパルス光 源は,超高速光信号処理技術を実現する要素技術として, 有力な一手段になりうると考えられる.

文 献

- M. Nakazawa, T. Yamamoto and K. R. Tamura: "1.28 Tbit/s-70 km OTDM transmission using third- and fourthorder simultaneous dispersion compensation with a phase modulator," Electron. Lett., 36 (2000) 2027-2029.
- S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. Schmidt-Langhorst, J. Berger and H.-G. Weber: "Ultrafast all-optical 3R-regeneration," IEICE Trans. Electron., 87 (2004) 1114–1118.
- 3) K. Ikeda, J. M. Abdul, S. Namiki and K. Kitayama: "Optical quantizing and coding for ultrafast A/D conversion

using nonlinear fiber-optic switches based on Sagnac interferometer," Opt. Express, **13** (2005) 4296–4302.

- 4) M. Tadakuma, O. Aso and S. Namiki: "A 104 GHz 328 fs soliton pulse train generation through a comb-like dispersion profiled fiber using short high nonlinearity dispersion shifted fibers," 2000 Optical Fiber Communications Conference (OFC 2000), ThL3 (2000) pp. 178-180.
- K. Igarashi, J. Hiroishi, T. Yagi and S. Namiki: "Comb-like profiled fibre for efficient generation of high quality 160 GHz sub-picosecond soliton train," Electron. Lett., 41 (2005) 688-690.
- K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi and S. Namiki: "Widely wavelength-tunable 40 GHz femtosecond pulse source based on compression of externally-modulated pulse using 1.4 km comb-like profiled fibre," Electron. Lett., 41 (2005) 797-798.
- 7) T. Inoue and S. Namiki: "CL-band tunable optical pulse compression based on stationary rescaled pulse propagation in comb-like profiled fibre," *31st European Conference on Optical Communications* (ECOC 2005), Mo3.5.2 (2005) pp. 55–56.
- T. Inoue, H. Tobioka, K. Igarashi and S. Namiki: "Design of comb-like profiled fiber for efficient pulse compression based on stationary rescaled-pulse propagation," 2005 Optical Fiber Communications Conference (OFC 2005), JWA7 (2005).
- 9) T. Inoue, H. Tobioka and S. Namiki: "Stationary rescaled pulse in alternately concatenated fibers with O(1)accumulated nonlinear perturbations," Phys. Rev. E, 72 (2005) 025601 (R).
- 10) Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano and S. Namiki: "Nearly exact optical beat-to-soliton train conversion based on comb-like profiled fiber emulating a polynomial dispersion decreasing profile," IEEE Photonics Technol. Lett., 17 (2005) 1698–1700.
- 11) Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano and S. Namiki: "Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre," Electron. Lett., 41 (2005) 1048–1050.
- 12) S. V. Chernikov, J. R. Taylor and R. Kashyap: "Comblike dispersion-profiled fiber for soliton pulse train generation," Opt. Lett., 19 (1994) 539–541.
- 13) J. Hiroishi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S. Matsushita, H. Tobioka, S. Namiki and T. Yagi: "Dispersion slope controlled HNL-DSF with high gamma of 25 W⁻¹ km⁻¹ and band conversion experiment using this fiber," 28th European Conference on Optical Communications (ECOC 2002), PD1.5 (2002).
- 14) S. V. Chernikov, E. M. Dianov, D. J. Richardson and D. N. Payne: "Soliton pulse compression in dispersion-decreasing fiber," Opt. Lett., 18 (1993) 476-478.
- 15) S. V. Chernikov, J. R. Taylor and R. Kashyap: "Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression," Electron. Lett., **30** (1994) 433-434.
- Y. Takushima and T. Okoshi: "Suppression of simulated Brillouin scattering using optical isolators," Electron. Lett., 28 (1992) 1155–1156.
- 17) S. Takasaka, Y. Ozeki, K. Igarashi and S. Namiki: "Optical phase-locking of 160 GHz optical beat to 40 GHz optical pulse train using a three-electrode DFB-LD and a Si avalanche photodiode," *31st European Conference on Optical Communications* (ECOC 2005), Th1.3.6 (2005) pp. 799-800.

(2005年8月17日受理)