栄

建

多彩なガラス —— 新しい着色ガラスと蛍光ガラス ——

Colorful Glasses: Novel Colored Glass and Phosphorescent Glass

Jianrong QIU

In this article, we review our recent research development on novel colored glass and phosphorescent glass based on the femtosecond laser interaction with glass. We introduce three-dimensional colored glass due to the space-selective formation of color center, valence state change of active ion, and precipitation of nanoparticles. Three-dimensional long-lasting phosphorescence phenomenon and three-dimensional emission image written by femtosecond laser by applying the formation of color center and manipulation of valence state of active ions are also explained.

Key words: colored glass, phosphorescent glass, femtosecond laser, three-dimension, interaction

ガラスは,窓ガラスのように,往々にして無色透明であ る. 直接触れないと、その存在すら判別できない. したが って, ガラスの役割は時々無視されてしまう. 無色透明で あることやその重要性から, ガラスは空気によく似てい る. その意味で、ガラスはまさに凝固した空気といえる. 光増幅用の希土類ドープガラスファイバーに代表されるよ うに、ガラスは高度な均質性と透明性をもち、またさまざ まな形状に容易に成形でき、さらにいろいろなものをその 中に均質に溶け込ませることができるという特徴をもって いる.また,ガラスは結晶に比べ,熱力学的に準安定な状 態にあり、何らかの外部の刺激を受けると容易にもっと安 定な状態に変化する。そのような特徴を生かし、ガラスは 現在私達の生活のすみずみまで活躍している.着色ガラス と蛍光ガラスについては,希土類,遷移金属,重金属,ナ ノ微粒子をドープしたもの,放射線の照射でカラーセンタ ーの形成により全体的に着色するガラスと発光するガラス はよく知られていて,これらはすでにガラスレーザー,光 増幅器,光減衰器,フィルター,イメージセンサーなどへ 幅広く応用されている¹⁾.本稿では特に、フェムト秒レー ザーとガラスの相互作用を利用した新しい着色ガラスと蛍 光ガラスについて紹介する.

1. なぜフェムト秒レーザーか

フェムト秒レーザーはパルス幅が狭いために、レーザー のエネルギーは材料の熱拡散速度に比べ十分に速く照射部 に集中して注入することができるため、熱の影響が小さ く、効率よく精度の高い微細加工が可能である。また、電 場強度が非常に高いので、ビームが集光されたところの近 傍だけ空間選択的に多光子吸収、多光子イオン化などの非 線形反応を誘起することができる。フェムト秒レーザーの この2つの特徴を利用し、フェムト秒レーザーを集光して ガラスに照射すると、集光点近傍だけに新たな電子構造を 誘起させ、その誘起構造の空間選択的な導入と配列によっ てガラスに新しい機能を賦与することが可能である².

郎

2. 立体的に着色したイメージが書き込まれた無色透 明なガラス

2.1 カラーセンターと活性イオンの価数変化を利用する

アルカリリン酸塩ガラスをフェムト秒レーザーで照射し た後、ガラス内部のレーザーが集光照射されたところは赤 紫色を呈する。照射前後の吸収スペクトルを測定すると、 フェムト秒レーザー照射後にリン原子に隣接する酸素原子 がホールをトラップしたことにより、520 nm にピークを

浙江大学材料系(〒310027 中国浙江省杭州市玉泉) E-mail: jrq@mail.goo.ne.jp

もつ吸収が観測された、誘起構造のレーザー伝搬方向の長 さは、レーザーの平均出力の平方根にほぼ比例する.基本 波の多光子吸収だけでなく, レーザーの自己収束と自己位 相変調による白色光も構造の誘起に影響していると考えら れる.

一方, Mn²⁺ と Fe³⁺ を共ドープした無色透明なアルカ リシリケートガラスをフェムト秒レーザーで照射した後、 ガラスは紫色に変色した³⁾、フェムト秒レーザー照射後に、 530 nm にピークをもつ 230~650 nm のブロードな Mn³⁺ の d-d 遷移による吸収が観測された。集光照射されたとこ ろの Mn²⁺ の一部が Mn³⁺ に変化したので、この現象を利 用して,三次元的に紫色に着色した画像をガラス中に書き 込むことができる (図1).

2.2 ナノ微粒子の析出を利用する

Au, Ag をドープしたガラスにフェムト秒レーザーを照 射し, さらに熱処理を行い, ガラス中に空間選択的にナノ 微粒子を析出させることができる4-6). Au イオンドープ ガラスはフェムト秒レーザーの照射で、 集光されたところ にはカラーセンターの形成により,灰色になる(図2のイ メージ). 300°C 熱処理すると、カラーセンターが消えて、 いったん無色透明に戻る。さらに高い温度(例えば 550°C) で熱処理すると、フェムト秒レーザーを当てたところが赤 く変色する(図2の蝶).透過型電子顕微鏡(図3)と吸 収スペクトルから、フェムト秒レーザーを照射したところ には、ナノのAuの微粒子が析出したことが判明した。フ ェムト秒レーザーの照射によって, Auイオンが還元さ れ,Auの原子が形成し、さらに高温で熱処理するとAu 原子が動いて、Auのナノ微粒子を形成すると推測され る. 異なるレーザーパワー密度で照射した場合,パワー密 度が高くなるにつれて、図4に示すようにAuのナノ微粒 子による吸収が短波長側にシフトし、フェムト秒レーザー

> <u>20nm</u> 20nm

図3 フェムト秒レーザー照射後,さらに550°Cで熱処理し た部分のAuドープガラスの透過型電子顕微鏡写真.

で照射されたところの色は、紫、赤、黄の順で変化する。 色の変化はナノ微粒子のサイズ分布に対応し、ナノ微粒子 のサイズ分布はフェムト秒レーザーの照射条件により制御 可能である. さらに, いったんフェムト秒レーザー照射と 熱処理により析出したナノ微粒子は、同じ波長のフェムト 秒レーザーで集光照射し、150℃付近の低温で熱処理する と、ナノ微粒子の析出により赤くなった部分はふたたび透 明になり、ナノ微粒子がフェムト秒レーザーの照射により 消されることがわかった(図5).高温熱処理すると、こ の部分がふたたび Au のナノ微粒子の析出により赤くなる ことなどから、ナノ微粒子がレーザー光エネルギーを吸収 し、高温状態になり、Auの原子の一部はナノ微粒子から とばされ、移動し、ナノ微粒子が小さくなる、または原子 になると推測している。

3. 立体的に長残光を示すガラス

長残光現象は、昔からよく知られている。中国の宋の時 代に、すでに夜光壁に関する記述があった、夜になると壁 が神秘的に光りだすという,壁の材料となる蛍石類鉱物が 昼に太陽光のエネルギーを蓄積し,夜になると発光の形で 緩やかにエネルギーを放出する。 蛍石という名前の由来も そこからだと推測される.近年,残光輝度が高く,残光持 続時間が12時間にも及び、放射線元素をまったく含まず 化学的耐久性もすぐれる SrAl₂O₄: Eu²⁺, Dy³⁺ (緑色), $CaAl_2O_4: Eu^{2+}$, Nd³⁺ (青紫色) と Y₂O₂S: Eu³⁺, Mg²⁺, Ti⁴⁺(赤色)など,さまざまな長残光蛍光体が開発されて いる。病院の安全標識、工芸品などに広く使われている。 一方, ガラスは結晶と違って, 原子がランダムな配列構

> 0.8 0.6 0.4 Ext а 0.2 b 400 500 600 700 800 300 λ /nm

図4 異なる強度のフェムト秒レーザーで照射した Au ドー プガラスの吸収スペクトル.

a: 6.5×10¹³ W/cm², b: 2.3×10¹⁴ W/cm², c: 5.0×10¹⁶ W/ cm². すべてのガラスサンプルは 550℃ で熱処理1時間.

図1 フェムト秒レーザー照射により誘起された Mn³⁺→ Mn²⁺ を利用した,紫色に着色したイメージの書き込み.

図 6 フェムト秒レーザー照射後ガラスが長残光を発している写真. 青,緑,赤色に発光しているのは Eu^{2+} , Tb^{3+} , Pr^{3+} ドープのガラスである.

図 2 Au ドープガラス. イメージ:フェムト秒レーザー照射 前, 蝶:フェムト秒レーザー照射後, さらに 550°C で熱処理.

図8 (a) フェムト秒レーザーでイメージが書き込まれた Eu³⁺ドープAlF₃系ガラス,(b) Eu³⁺ドープAlF₃系ガラス の励起と発光スペクトル.a,b:フェムト秒レーザー照射前. c,d:フェムト秒レーザー照射後.

図5 フェムト秒レーザー照射による Au ナノ微粒子の消去. (a) ナノ微粒子析出, (b) 内部にさらにフェムト秒レー ザー集光照射, (c) 300℃ でさらに熱処理.

図7 フェムト秒レーザー照射前後の Ag⁺ドープガラスの励 起と発光スペクトル. a, b:照射前, c, d:照射後.

造をもつ.長残光現象の有無は長距離構造と関係ないの で,結晶で観測される現象は一般的にガラスでも観測され る.また,ガラスの特徴を生かした新しい応用も期待され る.最近,紫外線または短波長の可視光の励起で明るく, 長い残光を示すガラスが多く見いだされている.

紫外線の照射で長残光が観測されるなら、尖頭値が高い 赤外のパルスレーザーで、多光子吸収などの非線形過程を 利用し、レンズで集光し、焦点近くだけに選択的に長残光 を発生させることが容易に考えられる。

図6に示すように、800 nm, 150 fs のフェムト秒レーザー 光を集光して、Eu²⁺、Tb³⁺、Pr³⁺をドープした CaO-Al₂O₃-SiO₂ ガラスに照射した後、暗室では、レーザーの焦点が たどった跡からそれぞれ青、緑、赤色の長残光が観測され た⁷⁾. 残光の強度はほぼ時間に反比例する。長残光の強度 の時間依存性から、長残光の発生は、多光子過程により誘 起された電子と正孔ペアの距離が一定の分布をもつこと、 電子と正孔の結合が熱アシストトンネリング過程によるこ とが推測される。現在、多くの希土類 (Eu²⁺、Eu³⁺、Ce³⁺、 Tb³⁺、Pr³⁺、Sm³⁺、Tm³⁺)や遷移金属 (Mn²⁺、Cu⁺)、さ らに Ge などの金属イオンをドープしたガラスで長残光現 象が観測されている。

4. 立体的に発光するイメージが書き込まれたガラス

フェムト秒レーザーを照射した前後の石英ガラス (ES:日本石英ガラス(株))のESRスペクトルを測定し, フェムト秒レーザーの照射により生じたSiE'などの欠陥 によるシグナルが検出された。画像が書き込まれたガラス は、紫外線照射により青緑色に光った。一方,画像を書き 込んでいなかったガラスの場合には、発光が観測されなか った。発光スペクトルから、発光はガラス中に誘起された

図9 Sm³⁺ドープしたガラスの発光スペクトル.a:フェム ト秒レーザー照射前,b:フェムト秒レーザー照射後.

酸素欠損の欠陥によるものであることが判明した.

図7は、Ag⁺ドープガラスの発光スペクトルである. フェムト秒レーザー照射前後には、まったく違うスペクト ルを示した。254 nm の紫外線で照射するときに、フェム ト秒レーザーに照射されていないところは青く光るのに対 し、フェムト秒レーザーによりイメージが書き込まれたと ころは Ag⁺ の還元によりオレンジ色に発光する。

800 nm, 150 fs のフェムト秒レーザーを対物レンズで 集光し, Eu³⁺をドープした AlF₃ 系ガラスにイメージを 書き込み,その後 254 nm の光で照射した.図8 (a) には, 254 nm の紫外線で励起したときの発光の様子を示す.未 照射部には Eu³⁺ の f-f 遷移による赤色発光が観測された が,フェムト秒レーザー照射部分では Eu²⁺ の f-d 遷移に よる青色発光が観測された (図8 (b)).また,フェムト秒 レーザー未照射の場合,顕著な ESR シグナルが観測され なかったが,フェムト秒レーザーの照射によりカラーセン ターによるシグナルだけでなく, Eu²⁺ による ESR シグナ ルも検出された⁸⁾.レーザーの集光照射により,一部の Eu³⁺ が Eu²⁺ に還元された.

図 9 は、Sm³⁺ドープアルミノホウ酸塩系ガラスの、フ エムト秒レーザー照射前後の 514.5 nm 光で励起したとき の発光スペクトルである。560,600,645,705 nm のピー クは Sm³⁺の f-f 遷移によるもので、フェムト秒レーザー 照射後に観測される 683,700,724,760 nm の新しいピ ークは Sm²⁺の f-f 遷移によるものである^{9,10)}.フェムト 秒レーザーの照射により集光照射されたところの一部の Sm³⁺が、Sm²⁺に還元されている。また、Sm²⁺イオン含 有ガラスでは、室温でのホールバーニングが報告されてお り,波長多重記録への応用が期待されている。そこで、フ ェムト秒レーザーで照射した領域に対して、ホール形成実 験を行った。フェムト秒レーザーにより光還元された部分 に、Ar⁺レーザーポンプの DCM 色素レーザーの 680 nm のレーザー光を照射した後の Sm²⁺の $^{7}F_{0}$ - $^{5}D_{0}$ の発光をモ ニターして測定したところ、色素レーザーの照射により、 励起スペクトル上にホールの形成が確認された。空間軸プ ラス波長軸での光記録の可能性が示された。

5. ま と め

以上,フェムト秒レーザーとガラスの非線形相互作用を 利用し、ガラス内部に立体的に着色する、または発光する イメージを書き込むことが可能であることを紹介した。工 芸品ばかりでなく、三次元の光メモリー、光増幅回路、光 演算回路などへの応用も期待される。例えば、フェムト秒 レーザーによる空間選択的な活性イオンの価数制御は,高 密度の三次元光メモリーに応用できる。一般的に, 屈折率 変化を利用するものに比べ、希土類の還元と酸化状態の発 光の違いを利用できるので、S/N比が高く、汎用の半導 体レーザーを励起源として利用できる利点がある. さら に、色素レーザーの波長をチューニングすることで、フェ ムト秒レーザーにより還元されたスポットに波長軸での光 メモリーの構築が可能である。空間,波長軸での,究極的 な光メモリーの構築方法として期待される。 ガラスのすぐ れた特徴を生かすことにより, 今後も新しい光機能をもつ ガラスが創出されるだろう.

文 献

- 作花済夫,境野照雄,高橋克明:ガラスハンドブック(朝倉 書店,1975).
- 2) K. Hirao, T. Mitsuyu, J. Si and J. Qiu: Active Glass for *Photonic Devices* (Springer, Berlin, 2001).
- J. Qiu, C. Zhu, T. Nakaya, J. Si and K. Hirao: "Spaceselective valence state manipulation of transition metal ions inside glasses by a femtosecond laser," Appl. Phys. Lett., 79 (2001) 3567–3569.
- 4) J. Qiu, M. Shirai, T. Nakaya, J. Si, X. Jiang, C. Zhu and K. Hirao: "Space-selective precipitation of silver nanoparticles inside glasses," Appl. Phys. Lett., 81 (2002) 3040–3042.
- J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang and K. Hirao: "Manipulation of gold nanoparticles inside transparent materials," Angew. Chem. Int. Ed., 43 (2004) 2234-2268.
- J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si and K. Hirao: "Optical properties of structure-modified Au-ion-doped glasses," Opt. Lett., 29 (2004) 370–372.
- 7) J. Qiu, K. Miura, H. Inouye, Y. Kondo, T. Mitsuyu and K. Hirao: "Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions," Appl. Phys. Lett., **73** (1998) 1763–1765.
- J. Qiu, K. Kojima, K. Miura, T. Mitsuyu and K. Hirao: "Infrared femtosecond laser pulse-induced permanent reduction of Eu³⁺ to Eu²⁺ in a fluorozirconate glass," Opt. Lett., 24 (1999) 786–788.
- 9) J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu and K. Hirao: "Permanent photoreduction of Sm³⁺ to Sm²⁺ inside a sodium aluminoborate glasses by an infrared femtosecond pulsed laser," Appl. Phys. Lett., **74** (1999) 10–12.
- K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi and K. Hirao: "Three dimensional optical memory with rewriteable and ultrahigh density using the valence state change of samarium ions," Appl. Phys. Lett., 80 (2002) 2263-2265.

(2005年7月25日受理)