+

研究論文

Received August 8, 2006; Accepted December 4, 2006

タイリング結晶を用いた大口径チャープパルス増幅レーザーの 第二高調波発生に関する数値解析

湯川 博基*·張本 鉄雄*,***·白神 宏之**

*山梨大学大学院 〒400-8511 甲府市武田 4-3-11 **大阪大学レーザーエネルギー学研究センター 〒565-0871 吹田市山田丘 2-6

Numerical Analysis on Second-Harmonic Generation of a Large-Scale Chirped-Pulse Amplification Laser with Tiling Crystals

Hiroki YUKAWA*, Tetsuo HARIMOTO*,*** and Hiroyuki SHIRAGA**

*Graduate School, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 **Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita 565-0871

This paper describes numerical evaluations on second-harmonic generation with tiling KDP crystals for a large-scale high-intensity laser system used as a driver of the laser fusion. A type I phase-matching scheme is a practical way to achieve the second-harmonic generation with a high efficiency, depending on the crystal thickness, conversion efficiency, and laser polarization. The optimum crystal thickness is around 5.0 mm under conditions of 1053 nm wavelength, 30 GW/ cm² intensity, and 0.5 ps pulse duration. The additional phase shift due to the thickness difference between each crystals should be close to the integral multiple of 2π to avoid additional interference at focal point. In comparison with the standard crystal, the tiling angle of other tiling crystals around *x*, *y*, *z* axes should be within -0.15-+0.1 mrad, -10-+10 mrad, and -10-+10 mrad, respectively, so that the variation in the conversion efficiency is less than 5%.

Key words: laser fusion, large-scale chirped-pulse amplification laser, tiling crystals, alignment tolerance, second-harmonic generation

1. はじめに

現在,レーザー核融合方式のひとつとして,爆縮された 燃料球が慣性で静止しているきわめて短時間に超高強度・ 超短パルスレーザーを照射することで,点火に至らしめる 高速点火方式の研究が進められている¹⁾.この方式による 研究計画は,高速点火実証計画(FIREX)とよばれ²⁾,磁 場核融合方式とは異なる方式によってレーザー核融合の実 現を目指すものである.

FIREX 計画ではメートル級の大口径レーザー装置およ びそれにかかわるドライバーの研究が進められている が²⁾,ターゲットへの吸収率が入射レーザーの波長に依存 することから、今後、使用される大口径レーザーに対する 波長変換技術および大口径非線形光学結晶が必要となる可 能性がある。しかし、メートル級レーザーに対応する大口 径非線形光学結晶を単一結晶から得ることは必ずしも容易 ではない.ナノ秒〜サブナノ秒領域の高出力レーザーを用 いた核融合実験では、数枚の非線形光学結晶をタイリング することによって、大口径化の問題を解決することができ るだろう³⁾.しかし、結晶の設置誤差による変換効率の低 下および空間分布における歪みが問題となる.また、タイ リング結晶間の厚さ精度が原因で各結晶による第二高調波 間に位相差も生じる.本稿では、タイリング結晶による第 二高調波発生に関する研究において、現在開発が進められ ている核融合用ピコ秒レーザーパルスに対するタイリング 結晶の光学設計にかかわる指標を明らかにし、群速度不整 合の影響を考慮した第二高調波の空間・時間・位相分布に 関する数値計算結果を報告する.

2. タイリング結晶の設置パラメーター

位相整合角度 0mのタイリング結晶は Fig.1 に示すよう

^{***} E-mail: harimoto@yamanashi.ac.jp

Fig. 1 Schematic diagram of tiling crystals with a phasematching angle θ_m . (a) Coordinate system of tiling crystals. (b) Tilting angle α around *x* axis for crystal 1. (c) Tilting angle β around *y* axis for crystal 1. (d) Tilting angle γ around *z* axis for crystal 1. (e) Thickness difference Δd between crystal 1 (standard crystal) and other crystals 2, 3, 4.

に、典型的に4枚の非線形光学結晶から構成され、設置誤 差に対する調整はすべて Fig.1 (a) に示す結晶1を基準に して行う.アライメントを行う際の座標系を Fig.1 (a) の ように設定した.設置パラメーターは Fig.1 (b), (c), (d) に示すように x 軸まわりの回転角度誤差 α , y 軸まわりの 回転角度誤差 β , z 軸まわりの回転角度誤差 γ 03つであ る.これら3つのパラメーターと位相不整合角との関係を 設置誤差による光軸の変化をもとにして数式化を行った.

基本波から第二高調波への変換効率に影響を与えるパラ メーターは、回転角度誤差以外にタイリング結晶の厚さ誤 差がある.また、Fig.1 (e) に示す結晶間の厚みの差 *Δd* は第二高調波レーザービームに位相差を与える.これによ り第二高調波を集束する場合、焦点において干渉が生じ、 位相差によって焦点における強度分布が変化することがあ りうる.

x, y, z軸まわりの回転マトリックスを $R^{i\alpha}, R^{i\beta}, R^{k\gamma}$ とすると,

$$R^{i\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}$$
(1)

36卷2号(2007)

$$R^{j\beta} = \begin{bmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{bmatrix}$$
(2)

$$R^{k\gamma} = \begin{bmatrix} \cos\gamma & \sin\gamma & 0\\ -\sin\gamma & \cos\gamma & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(3)

となる. 基準結晶1の光軸方向マトリックスを $\begin{bmatrix} C_x \\ C_y \\ C_z \end{bmatrix}$ =

 $\begin{bmatrix} 0\\\sin heta_{m}\\\cos heta_{m}\end{bmatrix}$ とすると,角度 α , β , γ で回転後のタイリング

結晶の光軸方向マトリックス $\begin{bmatrix} C_x \\ C'_y \\ C'_z \end{bmatrix}$ は,

$$\begin{bmatrix} C'_{x} \\ c'_{y} \\ -C'_{z} \end{bmatrix} = R^{k\gamma} R^{j\beta} R^{i\alpha} \begin{bmatrix} C_{x} \\ C_{y} \\ C_{z} \end{bmatrix}$$
(4)

と表される.式(4)から、位相不整合角 $\Delta \theta_m$ と回転角度 誤差との関係は

$$\Delta\theta_{\rm m} = \cos^{-1} [\cos\beta\cos(\theta_{\rm m} + \alpha)] - \theta_{\rm m} \qquad (5)$$

と表される.式(5)より,位相不整合角 $\Delta \theta_m$ に関与する パラメーターは x, y 軸まわりの設置誤差 α および β の 2 つであることがわかる. z 軸まわり設置誤差 γ は,入射 基本波の偏光方向と結晶光軸方向との相対的な位置関係に 影響を与えるが,一般的なアライメント精度ではこの影響 を無視することが可能である,したがって,式(5)より 許容位相不整合角 $\Delta \theta_m$ の決定によって α , β の許容範囲 が求められる.

タイリング結晶の光学設計手順として、まず最適結晶厚 さの決定を行う.決定要素は強度変換効率、エネルギー変 換効率、パルス幅、パルス波形である.これらをもとにし て、1)基準結晶1に対する設置誤差によって位相不整合 角が変化した場合であっても、変換効率の低下が顕著に現 れずに高い変換効率が得られる厚さであること、2)発生 した第二高調波にサブパルスが現れておらず⁴¹入射光の時 間分布に近いこと、3)第二高調波のパルス幅が入射光の それを超えないこと、を条件として最適結晶厚さを決定す る.そして、その厚さにおいて、位相整合状態における変 換効率に対して95%を保証する許容位相不整合角を決定 し、設置誤差 α , β の許容範囲を算出する.また、決定さ れた設置条件のもとで、タイリング結晶間における厚さの 差について、光波干渉の観点から評価し、その許容範囲も 求める.

タイリング結晶の設置パラメーターの許容範囲 3.1 数値計算モデル

+

設置パラメーターの許容範囲を定量的に評価するため に、マクスウェル方程式に基づき導かれた群速度を含む非 線形波動方程式を用いる.

Type I 位相整合方式の第二高調波発生に関する非線形 波動方程式は

$$\frac{\partial A_{1o}}{\partial z} + \frac{1}{v_{1o}} \frac{\partial A_{1o}}{\partial t} = -i \frac{\omega}{n_{1o}c} d_{eff} A_{1o}^* A_{2e} \exp(-i\Delta kz)$$
(6)

$$\frac{\partial A_{2e}}{\partial z} + \frac{1}{v_{2e}} \frac{\partial A_{2e}}{\partial t} = -i \frac{\omega}{n_{2e}c} d_{eff} A_{1o}^2 \exp(i\Delta kz)$$
(7)

と表される. Type II の非線形波動方程式は

$$\frac{\partial A_{1e}}{\partial z} + \frac{1}{v_{1e}} \frac{\partial A_{1e}}{\partial t} = -i \frac{\omega}{n_{1e}c} d_{eff} A_{2e} A_{1o}^* \exp(-i\Delta kz)$$
(8)

$$\frac{\partial A_{1o}}{\partial z} + \frac{1}{v_{1o}} \frac{\partial A_{1o}}{\partial t} = -i \frac{\omega}{n_{1o}c} d_{eff} A_{1e}^* A_{2e} \exp(-i\Delta kz)$$
(9)

$$\frac{\partial A_{2e}}{\partial z} + \frac{1}{v_{2e}} \frac{\partial A_{2e}}{\partial t} = -i \frac{2\omega}{n_{2e}c} d_{eff} A_{1o} A_{1e} \exp(i\Delta kz)$$
(10)

と表される.ここで、 A_{10} 、 A_{1e} はそれぞれ基本波の常光線 方向(10),異常光線方向(1e)の複素光波振幅であり, A2e は第二高調波の異常光線方向(2e)の複素光波振幅で ある. z は結晶中の伝播距離, t は時間, ω は基本波の周 波数、 $d_{\rm eff}$ は結晶の非線形光学定数、 $n_{\rm 1o}$ 、 $n_{\rm 1e}$ 、 $n_{\rm 2e}$ は屈 折率, c は真空中における光の速度, △k は位相不整合フ アクター, v10, v1e, v2e は群速度である. レーザーパル スの強度は $\epsilon_0 cn_j |A_j|^2/2$ (j=10, 1e, 2e) で表され, そのエ ネルギーは強度の時間・空間の積分値で与えられる。ここ で、 ϵ_0 は真空中の誘電率である。数値計算では、 A_{10} 、 A_{1e} および A_{2e} は図1に示すような座標系における座標(x, x)y, z)に依存し、基本波および第二高調波の時間・空間分 布の両方を考慮する. 初期の A10, A1e および A2e につい て,空間分布をスーパーガウシアン,時間分布をガウシア ンと仮定する.また,初期の入射基本波は均一な位相をも つと仮定する.基本波レーザーに関しては、ビーム径1m, 中心波長 1053 nm, 強度 30 GW/cm², パルス幅 0.5 ps (半 値全幅)のガウス分布をもつものを用いた。これをタイリ ング結晶に透過させ、526.5 nmの第二高調波に変換する。

非線形波動方程式に基づき、小信号近似では、第二高調 波の変換効率を $\eta = \eta_0 \sin c^2 (\Delta k d/2)$ と表すことができ る.ここで、 η_0 は位相整合時の変換効率で、d は非線形光 学結晶の厚さである。第二高調波を効率的に発生するため に、位相整合条件 ($\Delta k = 0$) を満たす必要がある。基本波の ビーム発散やバンド幅等の起因で位相不整合(*Δk*≠0) に なると、高調波の変換効率が低くなる。一般に、 $|\Delta k| \leq \pi/d$ を利用して第二高調波発生の許容範囲を評価し、結晶中で 相互作用する基本波と第二高調波にはビーム発散、バンド 幅,温度幅等の許容範囲をこの関係から求めることができ る。一方、パルスレーザーを用いた場合、相互作用する基 本波と第二高調波の間に位相整合条件のみならず、群速度 整合条件 $(v_{10} = v_{2e})$ を満たす必要もある。群速度整合で ないと,相互作用するレーザーパルス間に時間のずれが生 じ,結果的に第二高調波の変換効率も下がる。結晶の厚さ によっては, 第二高調波のパルス幅が入射する基本波のそ れより長くなることもありうる。一般に、 $v_{10} = v_{2e}$ 条件は 簡単に成り立たないが、第二高調波のパルス幅が広がらな いように、結晶の厚さ d は関係式 $d < \tau_{1\omega}/|1/v_{1o}-1/v_{2e}|$ のような条件で設計しなければならない. ここで、 $\tau_{1\omega}$ は 基本波のパルス幅である. さらに, 超高強度レーザーを用 いた場合には、高強度による結晶損傷、または結晶屈折率 の強度に対する依存性から高強度による三次の非線形光学 効果である位相変調や自己収束等の影響も出てくる。この ため,基本波の強度をこれらの影響が出ない大きさに設定 する必要がある.また,結晶の複屈折性によって,結晶中 で入射光と発生する第二高調波エネルギーの進行方向(ポ インティングベクトル)がなすウォークオフ角度の評価も 必要であるが,大口径レーザービームを扱うことから,結 晶内で入射基本波と第二高調波の間に存在するウォークオ フ効果を無視することができる.本稿で検討している波長 範囲は,1053 nmの基本波と526.5 nmの第二高調波であ るため、紫外光帯域で問題となる多光子吸収も無視するこ とができる.

本研究では、タイリング結晶として、大口径の単結晶を 得ることができ、レーザー耐損傷性が高い点から Type I および Type II の KDP 結晶を採用した^{3,5)}. Type I KDP 結晶は、基本波と第二高調波の群速度はほぼ同じで、大き な許容バンド幅を有する.これに対して、Type II KDP 結晶の許容角度範囲は Type I のそれより広い.また、非 線形光学定数、温度許容範囲およびウォークオフ角度等の 面では、Type I と Type II はほぼ同じ性能をもつ.

3.2 最適結晶厚さおよび許容位相不整合角

タイリング結晶の許容設置誤差範囲を求めるべく,まず はタイリング結晶の最適厚さおよび許容位相不整合角の決 定を行った。Fig. 2 (a),(b)は,位相整合方式 Type Iを 用いた場合の結晶厚さに対する強度変換効率とエネルギー

96 (38)

光 学

Fig. 2 Influence of the phase-mismatching angle $\mathcal{A}\theta_m$ on the second-harmonic generation in a Type I KDP crystal. (a) Energy conversion efficiency. (b) Intensity conversion efficiency. (c) Duration of the second-harmonic pulse. (d) Temporal shapes of the incident fundamental (1ω) and second-harmonic (2ω) pulses for the crystal thickness of 5.0 mm and the phase-mismatching angle of 150 μ rad.

変換効率の変化を示したものである. 位相不整合角が 0~ 250 μ rad まで変化するとき,最適結晶厚さは 5.0 mm で ある.結晶厚さの公差を±0.1 mm^{3,6,7)}とした. 5.0±0.1 mm の結晶厚さ範囲において基準結晶 1 の変換効率に対して, その 95%を保証するためには,Fig.1 に示す結晶 2,3, 4 の位相不整合角を 150 μ rad 以内に抑える必要がある. 位相不整合角 150 μ rad,結晶厚さ 5.0 mm のもとでは, 第二高調波のパルス波形にはサブパルスが現れておらず, 入射基本波と同じガウス分布になっていることが,Fig.2 (c) に示したパルス波形から確認できる.また,結晶厚さ に対する第二高調波のパルス幅(半値全幅)の変化を示し た Fig.2 (d) より,結晶厚さ 5.0 mm において第二高調波 のパルス幅は入射基本波のそれよりも小さくなっている.

同様に位相整合方式 Type II に関して、タイリング結晶 の最適厚さの決定および許容位相不整合角の決定を行っ た.Fig.3 (a),(b) に示すように、Type I と比較すると、 Type II を用いた場合の強度およびエネルギー変換効率の 低下が確認できる。最適な結晶厚さは 3.0 mm であり、位 相不整合角は 0.7 mrad 以内に抑える必要がある。これら の条件のもとでは、第二高調波のパルス波形にはサブパル スが現れておらず、入射基本波と同じガウス分布になって いることが Fig.3 (c) に示したパルス波形から確認でき る。また、Fig.3 (d) より、結晶厚さ 3.0 mm において第 二高調波のパルス幅は入射基本波パルスのそれよりも小さ

Fig. 3 Influence of phase-mismatching angle $\Delta\theta_m$ on the second-harmonic generation in a Type II KDP crystal. (a) Energy conversion efficiency. (b) Intensity conversion efficiency. (c) Duration of the second-harmonic pulse. (d) Temporal shapes of the incident fundamental (1ω) and the second-harmonic (2ω) pulses for the crystal thickness of 3.0 mm and the phase-mismatching angle of 0.7 mrad.

くなっている.

最適結晶厚さにおいて、入射基本波レーザーパルスの初 期強度変動を±5.0% としたとき、第二高調波の強度・エ ネルギー変換効率およびパルス幅の変化は、Type I およ び Type II ともに±1% 程度であり、波長変換によって得 られる第二高調波にはほとんど影響しない。

最適結晶厚さは、入射基本波の強度とそのパルス幅によって決められるが、基本波のパラメーターが変化すると最適な結晶厚さも変わる。そのため、Fig.2 および Fig.3 に示すような結果を再度新しいパラメーターで求めることが必要である。

3.3 タイリング結晶の許容設置誤差範囲

許容位相不整合角をもとにして,式(5)よりタイリン グ結晶における設置誤差の許容範囲を算出した.Type I の場合,基準結晶1に対する結晶2,3,4の許容設置誤差 は,x軸まわりの許容回転角度誤差に関しては-0.15~ +0.1 mrad,y軸まわりの許容回転角度誤差に関しては -10~+10 mrad,z軸まわりの許容回転角度誤差に関し ては-10~+10 mrad となった.Type II では,x軸まわ りの許容値は-0.7~+0.65 mrad,y軸まわりは-10~ +10 mrad,z軸まわりは-10~+10 mrad となった.こ の結果から,Type I と比較してType II のほうが許容設 置誤差範囲が広いという利点はあるが,最適結晶厚さ,変 換効率,および偏光方向の調整からType I の位相整合方

36卷2号(2007)

97 (39)

+

Fig. 4 Near field intensity distributions of (a) fundamental and (b) second-harmonic laser beams.

式がより実用的であると考えられる。

Type I におけるタイリング結晶の設置誤差による入射 基本波および第二高調波の近視野の空間分布の変化を Fig. 4 に示す.タイリング結晶に設置誤差が存在する場 合,第二高調波の近視野の空間分布は入射基本波の近視野 の空間分布と比較して歪んだ分布となる.しかし,基準結 晶1に対して結晶2,3,4の設置誤差を許容誤差内の150 µrad以内に抑えれば,基準結晶1に対する近視野の空間 分布の歪みは Fig.4 (b) に示すように 5.0% 以内に抑えら れる.

3.4 タイリング結晶間の厚さ精度

レーザー核融合では、大口径レーザーを集光させて燃料 ペレットに照射させるが、タイリング結晶間の厚さ精度が 原因で、それぞれの結晶による第二高調波間に位相差 *Δφ* が生じる.このため、第二高調波レーザービームを集光す る際、焦点におけるスポットサイズが大きくなり、ピーク 強度が低下すると考えられる⁸.位相変化に関するパラメ ーターは、結晶の設置誤差が起因する位相不整合ファクタ ー *Δk*、および結晶間の厚さ精度 *Δd* である.Table 1 よ

Table 1 Phase shift $\varDelta \phi$ (rad) of second-harmonic pulse due to $\varDelta k$.

$d_1 \text{ (mm)}$ -	$\varDelta \theta_{\rm m}$ (µrad)			
	0	50	100	150
4.9	0	0.06	0.12	0.184
5.0	0	0.06	0.12	0.186
5.1	0	0.063	0.127	0.190

り,許容厚さ範囲内 (5.0±0.1 mm) において,位相不整 合角度 $\Delta\theta_{m}$ の許容設置誤差に対する位相不整合ファクタ $-\Delta k$ による位相差 $\Delta\phi$ は,基準結晶 1 による第二高調波 の位相に対して最大で 0.19 rad の差がある.これは第二 高調波の中心波長 λ_{2} で表すと 0.03 λ_{2} の位相差である. また,Table 1 に示すように,一定の位相不整合角度 $\Delta\theta_{m}$ では,許容範囲内の結晶厚さの変化による位相変化は最大 で 0.006 rad である.位相不整合角度 $\Delta\theta_{m}$ の許容設置誤差 による位相変化 0.19 rad と比較すると,ほぼ無視するこ とができる.位相不整合ファクター Δk による位相変化 は,結晶厚さの絶対的変化よりも設置誤差による影響が大 きい.

基準結晶1で発生した第二高調波の初期位相は、位相不 整合ファクター Δk_1 および結晶の厚さ d_1 の積 $\Delta k_1 d_1/2$ で, 他の結晶に関しては $\Delta k_j d_j / 2$ (*j*=2, 3, 4) で与えられる. 基 準結晶1の第二高調波に対する位相差 $(\Delta k_i d_i - \Delta k_1 d_1)/2$ は,非線形波動方程式を用いた数値計算で得られた値と一 致することから,タイリング結晶を設計するうえで,位相 不整合ファクター *Δk* による第二高調波の位相は初期の位 相関係によって容易に求めることができる。位相整合条件 $(\Delta k_j=0, j=1, 2, 3, 4)$ を満たしている場合であっても, Fig.1 (e) に示すように各結晶の厚さが同じでなければ, 結晶間の厚さの差 Δd_j による位相差 $2\pi (n_{10}-1) \Delta d_j / \lambda_2$ が 生じるため、この位相差の影響も考慮する必要がある。第 二高調波の変換効率を保証するため、まずタイリング結晶 の厚さ $d_i \approx 5.0 \pm 0.1 \, \text{mm}$ の範囲内に抑えなければならな い.同時にこの範囲において、位相差を2πの整数倍にし なければならないが、少なくとも残留位相差をπ/5以下 にする必要がある.

KDP 結晶に関して、すでに 50 cm 以上のサイズまで短時間で成長させる技術は確立されているが⁹⁰、軟質で脆性な材料であり、強い潮解性をもつため、研磨による光学面の創成が難しい。今回設計した KDP 結晶の厚さは 5 mm であり、従来のナノ秒レーザーに対応する厚さ 1 cm のアレイセル用 KDP 結晶より薄く、口径も大きいため、結晶の加工、力学的歪みの防止およびタイリング結晶間の制御は容易ではない。本稿で示した指標に基づき、大口径結晶

光 学

+

の加工および制御等の技術開発も進める必要がある。現時 点では、本稿で示した4枚のタイリング結晶のサイズを小 さくして、結晶の枚数を増やすことで、従来のアレイ式 KDP セルの技術をそのまま利用することが最も有効な方 法であると考えられる。

4. ま と め

タイリング結晶を用いたレーザー核融合用大口径高強度 レーザーの波長変換法において,群速度不整合の影響を考 慮した光学設計の指標を明らかにした。位相整合方式 Type I および Type II について検討した結果,最適結晶 厚さ、変換効率、および偏光方向の調整から、Type Iの 位相整合方式のほうが実用的であることが数値計算結果か ら示された. Type I を用いた場合, 中心波長 1053 nm, 強度 30 GW/cm², パルス幅 0.5 ps の基本波レーザーに対 して、最適結晶厚さ範囲は 5.0±0.1 mm であり、各結晶 間の相対的厚さ精度による位相差を2πの整数倍に近い値 にする必要がある。位相整合状態時の変換効率に対して, 95%の変換効率を保証するためには、基準結晶1に対す る結晶2,3,4の許容設置誤差を,x軸まわりの許容回転 角度誤差に関しては-0.15~+0.1 mrad, y 軸まわりの許 容回転角度誤差に関しては-10~+10 mrad, z 軸まわり の許容回転角度誤差に関しては-10~+10 mrad 以内に設

定する必要がある.この範囲内で設置できれば,各結晶透 過後の近視野の空間分布の乱れは5.0%以内に抑えられる.

文 献

+

- 白神宏之:"核融合燃料の高密度圧縮の展開"、レーザー研究、 32 (2004) 306-312.
- 2) 宮永 憲,金辺 忠,奥田 功,北川米喜,中塚正大:"大出 カレーザー技術の進展", J. Plasma Fusion Res., 81, Suppl. (2005) 48-58.
- 3) 佐々木友孝, 横谷篤至,山中龍彦,山中千代衛: "三倍高調 波発生用大口径アレー式 KDP セルの製作",レーザー研究, 13 (1985) 500-509.
- 4) T. Zhang, M. Yonemura, M. Aoyama and K. Yamakawa: "A simulation code for tempo-spatial analysis of threewave interaction with ultrashort- and ultrahigh-intensity laser pulses," Jpn. J. Appl. Phys. A, 40 (2001) 6455-6456.
- 5) 實野孝久:"レーザー核融合におけるハイパワー3倍高調波 変換",レーザー研究,20 (1992) 259-266.
- 6) 横谷篤至: "レーザー核融合用大型 KDP 単結晶の育成に関する研究",大阪大学博士論文 (1987) pp. 56-82.
- T. Sasaki and A. Yokotani: "Third harmonic generation in glass laser GMII using 10 cm KDP array segments cell," ILE Q. Prog. Rep. ILE-QPR, 88 (1989) 6–9.
- T. Harimoto: "Far-field pattern analysis for an array grating compressor," Jpn. J. Appl. Phys. A, 43 (2004) 1362–1365.
- 9) K. Fujioka, S. Matsuo, T. Kanabe, H. Fujita and M. Nakatsuka: "Optical properties of rapidly grown KDP crystal improved by thermal conditioning," J. Cryst. Growth, 181 (1997) 265-271.