光学的手法による不安定原子核の精密分光

和田道治

Precision Spectroscopy of Unstable Nuclei by Optical Methods

Michiharu WADA

Optical spectroscopy has been widely used for nuclear structure studies, especially for the static electromagnetic properties of nuclei such as nuclear charge radii and electromagnetic moments. High sensitivity and high precision of optical spectroscopy allows us to study even unstable nuclei. Nuclear properties determined by optical spectroscopy are often nuclear model independent since the fundamental interaction is well determined. Hyperfine interactions in isolated atoms play important roles in the interconnection between atomic spectroscopy and nuclear structure. In this report, recent topics on light nuclei and a new facility for dedicated optical spectroscopy of unstable nuclei are introduced.

Key words: nuclear laser spectroscopy, unstable nuclei, laser cooling, charge radii, nuclear moments

原子核構造の研究において、光学的手法による原子準位 の精密分光が多大な貢献をしてきた^{1,2)}.光学的手法によ って不安定核を含む多数の原子核の静的電磁特性,例えば 電磁モーメント,スピン,荷電半径を網羅的かつ高精度に 測定することが可能であり、これまでに、およそ46元素 の600 種類の不安定原子核が光学的方法で測定されてきた (図1)³⁾.これらの測定は相互作用が明確な電磁相互作用 を用いた不変の量であり、多種多様な原子核モデルを検証 することができる.原子核は、自然に存在するわずか250 余りの安定核と、自然には存在せず理論的には1万種類も あると予言されている不安定原子核からなり、高感度の光 学的分光法が、ごく少量しか測定試料が得られない不安定 原子核の核構造解明に大きな寄与をする.

光学的方法の感度の高さは、原子核反応に比べて圧倒的 に反応断面積が大きいこと、ビーム(光子)強度が高いこ と、1個の原子を多数回測定可能であることによる。典型 的な原子核反応の断面積は10⁻²⁴ cm² であるのに対して、 原子の共鳴吸収断面積は10⁻⁸ cm² にも達し、1 mWの可 視光レーザーの光子数は0.5 mA もの陽子ビーム強度に匹 敵する.容易に飽和強度を超え、すべての励起可能な試料 原子を励起できるばかりでなく、1個の原子の励起脱励起 を何度も観測することも容易である.このような条件は原 子核反応では到底達成できないことである.

光学的分光の高感度性はとりわけイオントラップのよう な蓄積装置によって、よりいっそう顕著なものとなる.レ ーザー冷却可能な条件下では単一原子でも高い S/N 比の 分光を実行できる。自由空間に閉じ込めることは、感度ば かりでなく精度の点でも大きな利点がある。空間に孤立し た原子に対する測定は物質中における測定のような曖昧性 の余地がないこと、観測するプローブの波長より小さい領 域に閉じ込めておくだけでドップラー広がりを排除できる ことにより、高精度・高確度の測定が可能となる。後者は ラム・ディッケ条件⁴⁰とよばれるもので、簡単にいえば観測 する波長より小さい振幅の振動はみえないということであ る。マイクロ波の分光では一般的な大きさのトラップに閉 じ込めるだけで達成でき、可視光域でも、数 mm 程度の小 型トラップに強く束縛したイオンに対するレーザー冷却 によってマイクロメートルの振幅を実現して達成されて

⁽独)理化学研究所山崎原子物理研究室(〒351-0198 和光市広沢2番1号) E-mail: mw@riken.jp

いる5)

本稿では,精密原子分光からどのような原子核の情報を どのような方法で得るのか,その原理といくつかの最新の 実験について解説する.さらに,精密原子分光を広範な元 素の不安定同位体に適用するための実験施設の開発につい て述べる.

1. 超微細相互作用―原子と原子核の架け橋―

原子スペクトルにおけるごく微細な分離構造として発見 された超微細構造は、核スピンの発見の起源である。 Pauli は、長岡半太郎らによる水銀原子の超微細構造のゼ ーマン分離の測定をもとに、核スピンとそれに伴う磁気モ ーメントの存在を提唱した⁶⁾.一般に超微細相互作用は、 原子の軌道電子および外場が原子核の位置に生成する電磁 場と原子核の電磁モーメントとの相互作用である。既知の 原子核をプローブにして磁性、電子スピン状態等の物性研 究に広く使われているが、ここでは、もっぱら孤立原子の 超微細構造から不安定原子核の電磁特性を測定する方法に ついて議論する.

孤立原子において, 軌道電子と原子核の電磁相互作用に よって原子準位に分離およびシフトが生じる。分離の数 は、軌道電子のスピン量子数(I)と核スピン量子数(I) の結合量子数 $\vec{F} = \vec{I} + \vec{J}$ によってF = |I - J|からF =|I+J|までの 2I+1本 (I $\ge J$ の場合) あるいは 2J+1本 (*I*≤*J*の場合)に分離する. さらに外部磁場があればそ れぞれが2F+1本にゼーマン分離する。よって超微細構 造のスペクトル線の観測によって核スピンを決定できるこ とになる。さらにおのおのの分離およびシフトの大きさ は、相互作用の多重度によって分類され、表1に示すよう に対応する原子核の電磁モーメントに比例する。その比例 係数,例えば磁気双極(M1)相互作用項においては原子 核の位置に軌道電子が生成する磁場 B(0), 電気四重極 (E2) 相互作用項においては電場勾配の値が別に求められ れば原子核の電磁モーメントを決定できる.具体的には, 同位体間でこの比例係数はある精度で一定であると近似で きるため,安定核の核モーメントを参照することにより不 安定核のモーメントを導出することができる。

この比例係数が同位体間で厳密には一定でないことは, 超微細場が原子核の有限な広がりの中で一様でない事実に 起因しており,超微細構造異常(hyperfine anomaly)と よばれる.磁気双極(M1)項の超微細構造異常は Bohr-Weisskopf 効果⁷⁾とよばれ,核内磁化分布の同位体間の変 化のプローブとなる.

電気単極項(E0)は原子核の電荷の有限な広がりのため

にエネルギー準位のシフトとして観測される。原子核内に おけるクーロンポテンシャルは点電荷の場合の1/rから ずれて r^2 の依存性をもち、大きい核ほど浅くなる (図 2). このため原子核内に有限の存在確率をもつs電子が関与す る準位は、その電子密度を $\rho_{e}(0)$ とすれば $2\pi/3 Ze^{2}\rho_{e}(0)\langle r_{c}^{2}\rangle$ だけシフトし,その大きさは平均二乗半径に比例する.分 離と違ってシフトを測定するには、原点すなわち点電荷の 場合の準位エネルギーを知る必要があり、一般にそれは容 易ではない。さらに原子核の質量の寄与、すなわち電子の 換算質量および複数電子系ではそれらの相関によるシフ ト,相対論効果やQED効果などの寄与も引き算しなけれ ばならない. 幸い, 重い核では荷電半径による寄与が優勢 で数 GHz 以上にもなるため、少なくとも同位体間で転移 エネルギーを比較すること(いわゆるアイソトープシフト 測定)によって平均二乗半径の差($\delta\langle r_{i}^{2}\rangle$)を決定できる。 安定核の荷電半径は電子散乱やミューオン原子法によって 精度よく測定されており⁸⁾,それを参照して絶対値を求め る.一方最近では、後述するように電子数3個以下のごく 軽い核では理論的に質量依存項や種々の補正項を高精度で 計算できるようになり⁹,高精度の光学分光のみから荷電 半径を直接導き出すことが可能となった.

光学的方法は,直接超微細構造を分光するばかりでなく 光ポンピング法による核偏極の生成のための強力な手法で ある.例えば,円偏光レーザーによって弱磁場中の電子と 原子核のスピンがよく結合した状態の原子を照射すると最 大の磁気量子数の準位にポンピングされ,そこでは,原子 核も完全に偏極している.必要であれば断熱的に強磁場に 移動し,電子と核の結合を解いてやればそのまま物質中に 打ち込んでも偏極は物性的に緩和されるまでの間保つこと ができる.偏極した核のベータ・ガンマ分光では,励起準 位のスピン・パリティー決定の決定の確度を増すことがで きる¹⁰⁾.さらに,ベータ線の放射方向の非対称性をプロー ブにして,外部磁場下でのNMR法で直接核モーメント を測定することにも広く使われている¹¹⁾.

2. 軽い元素の荷電半径

光学的方法による不安定核研究の最新のトピックスは, He, Li の不安定同位体の荷電半径の測定であろう.軽い 元素の中性子過剰不安定核において,陽子と中性子の分布 に顕著な差異があり,余分な中性子がコアのまわりに薄く かさのように分布していることが見いだされている¹²⁾.こ の現象は,谷畑らによって¹¹Liの中間エネルギー反応に おける全反応断面積が異常に大きいことから発見され¹³⁾, 以降,一大研究分野を形成している.全反応断面積の測定

384 (24)

図1 光学的方法で分光がなされた不安定原子核.濃く塗りつぶした 600 余りの核種が該当する¹⁻³. 四角い升は理化学研究所で建設中の新しい低速 RI ビーム生成施設(SLOWRI)で得られる核種と予 測される強度を示す.実線で囲われた領域はこれまでに存在が確認され半減期がわかっている核種.

表1 超微細構造定数と原子核の電磁的特性.

相互作用	I, J	分離定数	原子核の情報
電気単極 (E0)		$2\pi/3 Ze^2 ho_{ m e}(0) \langle r_{ m c}^2 \rangle$	〈rc〉平均二乗荷電半径
磁気双極(M1)	$\geq 1/2$	$A = \mu_I B(0)_J / (IJ)$	μι 核磁気モーメント
電気四重極 (E2)	≥ 1	$B = eQ_{\rm s} V_{\rm zz} ^{a}$	$Q_{ m s}$ 電気四重極モーメント
磁気八重極 (M2)	$\geq 3/2$	С	Ω磁気八重極モーメント

^a V_{zz} は原子核の位置における電場勾配.

では、文字通り陽子中性子を区別しない核物質全体の大き さを、しかも理論的原子核モデルを導入して求めるもので あり、中性子だけが広がっていることを直接測定すること はできなかった。光学的方法による荷電半径の測定が待た れていたが、従来、軽い核では核の広がりによる小さな効 果 (~1 MHz)を、~10¹⁵ Hz の転移エネルギーから、質量 に依存する大きな効果 (>10 GHz)を引いたうえで求め ることは困難とされていた。近年の精密レーザー分光技術 の発展によって、不安定核原子であっても 10⁻¹⁰ 以上の精 度で分光することが可能となると同時に、理論原子物理学 の進歩によって、少数電子系において質量依存項やその他 の補正項を高精度で計算できるようになり、直接荷電半径 を測定できるようになった。

ヘリウムの中性子過剰同位体 ⁶He (半減期 807 ms), ⁸He (半減期 119 ms)の測定は、アルゴンヌ国立研究所のグル ープによって磁気光学トラップを用いて行われた. GANIL の加速器ビームの照射で生成された He 同位体は

図2 原子核の荷電分布 (ρ_c) とそれによって生成されるクー ロンポテンシャル. 点電荷の場合 $\phi \propto 1/r$ だったものが,有 限な荷電分布のために核内では放物線形になる.

ターゲットから拡散し,高周波放電によって準安定準位 (2³S₁) へ励起された後,2³P₂準位への1083 nm レーザー 光によってトラップされる。別の389 nm プローブ光によ って3³P_{0,1,2}準位への転移を60 kHz の精度で決定し,⁴He との荷電半径の差を0.7%の精度で決定した^{14,15)}.

リチウム同位体のレーザー分光はGSIのグループによってTRIUMFで行われた¹⁶⁾. オンライン同位体分離器からのLiイオンビームはいったん熱いグラファイトに打ち込まれ,蒸発してきた中性Li原子に対して共鳴イオン化分光がなされた. 基底準位から励起準位($2^{2}S_{1/2} \rightarrow 3^{2}S_{1/2}$)へ,対向する2本のレーザーを用いたドップラーフリー二光子吸収によって測定され,共鳴の検出はその励起準位からの共鳴イオン化法によって高感度かつ高選択度をもって行われた. この転移の¹¹Li, ⁷Li間のアイソトープシフトは $\delta \nu^{11.7}$ =25101.226(124) MHz と測定され,質量依存項の理論値 $\delta \nu^{1k7}$ =25101.812(121) MHz を差し引き,荷電 半径 2.467(37) fm を得た.

HeとLiの荷電半径測定結果¹⁴⁻¹⁶⁾をHe,Li,Beの物 質半径測定結果¹⁷⁾と合わせて図3にまとめた.ここでは 相互の比較のために点粒子換算平均二乗半径を用いた.物 質半径はおおむね単調に増加し,^{6,8}Heや¹¹Liのようない わゆる中性子ハロー核においては大きく跳ね上がっている のに対して,荷電半径はむしろ中性子数増加によって減少 する傾向さえみられ,ハロー核における跳ね上がりも小さ いことが明瞭にわかる.さまざまな原子核モデルによって これらのハロー核の構造が計算されてきたが,荷電半径の 測定によって明解に取捨できることになる.ここで強調す べき点は,反応断面積から物質半径を導出する時点ですで に核モデルが必要であるのに対して,光学的方法による荷 電半径測定は核モデルに依存せずに決定できる量であるこ とである.

He, Li に続くのはベリリウム同位体である。中性 Li 原子と同電子配位の1価イオンは、イオントラップを用い た精密分光に適しており、また原子構造の理論計算が高精

図4 ベリリウム同位体のアイソトープシフト¹⁸⁾. ここでは, 原子核の広がりの効果 (体積効果) は測定精度に比べて小さい ため無視し,電子の換算質量に起因する質量シフト (NMS) と複数電子の相関に起因する質量シフト (SMS) を導出した. それに伴い,次なる未知核種 ¹¹Be⁺ イオンの共鳴周波数 ν^{11} を予言することができる.

度で可能である.筆者らは,理化学研究所の加速器施設に おいて不安定 Be 同位体のトラップおよびレーザー分光を 進めており,これまでに^{7,10}Be⁺のレーザー分光に成功し ている¹⁸⁾.現時点では,ガス冷却状態のイオンに対しての 分光のため,測定精度は10⁻⁸程度であり,荷電半径を導出 するには十分な精度が得られていないが,安定核が⁹Be し かない Be のアイソトープシフトをはじめて測定したこと になる.具体的には,質量無限大の極限の $2s^2S_{1/2} \rightarrow 2p^2P_{3/2}$ 転移エネルギー ν^{∞} =957569.55(28) MHz と,この準位 間の質量偏極パラメーターの差 κ =1884.5(46) GHz を決 定した.これは,短寿命同位体¹¹Be のレーザー冷却のた めにあらかじめ共鳴周波数を10 MHz 以下の確度で知る ための前提条件でもある(図 4).

ベリリウム同位体の荷電半径を導出するためには、測定 精度をさらに2桁上げる必要があり、それにはレーザー冷 却が必須である。図5に、レーザー冷却された⁷Be⁺のスペ クトルを示す。このBeイオンにとって、生成時に1GeV もの超高温であったものが、減速・ガス冷却・レーザー冷 却を経て、実に1µeV以下まで10⁻¹⁵倍もの運動エネルギ ーの減衰がなされたことに相当する。この図にみられるよ うに、レーザー冷却自身が非線形な過程であるため、この スペクトル自身から共鳴周波数を導出するには適していな い。実際にはもう1本の弱いプローブ光を用いて冷却光と 交互に照射しながら測定することが必要になる。現在その

386 (26)

準備を進めているところである.

ベリリウムにおいては、荷電半径の測定による陽子の分 布ばかりでなく,磁気超微細構造異常すなわち超微細構造 の磁気双極項(M1)の同位体効果によって原子核内の磁 化の分布の違いを導出できる。表1に示したように M1 項 の分離定数Aは、核磁気モーメントと軌道電子が原子核 の位置に生成する磁場との積で表される。この磁場はとり わけ接触項(contact term)とよばれる不対のs電子によ る寄与が大きく,かつそれは原子核の大きさの範囲内でも 厳密には一様ではない。一方原子核も点磁子ではなく有限 の分布をもつことから, Aの値は点磁子の場合 Apd に比 ベて $-\varepsilon_{BW}$ だけ小さくなる ($A = A_{pd}(1 + \varepsilon_{BW})$). 一般に A_{pd} の値を知ることは困難なので同位体間でのAの値と核g 因子 $(g=\mu_I/I)$ の比を比較することによって、 ϵ_{BW} の同 位体間の差 Δε_{вw} を求めることになる. ベリリウムの同位 体のうち,¹¹Beは,1個の価中性子が芯のまわりに弱い束 縛状態でかさのようになっていると考えられている. この 価中性子が核磁気モーメントの多くを担っていることか ら,まさに超微細構造異常が大きくみられることが期待さ れ19),それは価中性子が広がって分布していることの直接 測定に該当する。筆者らはこの事実に着目し、準備を進め てきた.核g因子と超微細定数Aを独立に10⁻⁶の高精度 で測定するためには、強い磁場下で超微細構造の磁気準位 を精密に測定する方法が適している。そのために超伝導磁 石を用いた複合型イオントラップを製作し²⁰⁾、レーザー・ マイクロ波多重共鳴法によって高精度に測定できるように なった²¹⁾.図6に測定に用いる転移と測定例を示す。現在 不安定 Be 同位体イオンの超微細構造測定がまさに進行中 である.

図6 °Be⁺ イオンの基底準位の超微細構造のゼーマン分離と その測定スペクトル.電子スピンフリップ転移周波数 ν_{e1} , ν_{e2} ,核スピンフリップ転移周波数 ν_{n1} , ν_{n2} の4つの周波数を 測定することによって超微細構造定数 A,核g因子 g_i を独 立に高精度で決定できる²¹⁾.

3. 汎元素の低速 RI ビーム生成施設-SLOWRI-

前章では、最新のごく軽い元素の実験について述べた が、歴史的には重い元素について多くの光学的手法、とり わけコリニアレーザー分光法、共鳴イオン化分光法による 測定がなされ、魔法数効果、核の変形、形状共存、偶奇ふ らつきなどの事実を解明してきた。一方、図1から明らか なように、全元素のおよそ半分の元素の同位体、しかも比 較的安定線に近い核種しか測定がなされていない。これ は、主として光学的分光に適した低速のビームが一部の元 素しか得られないという問題に起因している。

低速の不安定核ビーム (RI ビーム) は、これまで ISOL (isotope separator on line) という装置で生成されてき た.この方式では、加速器からのビーム(おもに陽子ビー

37巻7号 (2008)

図7 RFイオンガイド法による低速不安定核ビーム生成施設の概念図.

ム)で生成標的を照射し,標的中に生成された不安定核原 子を熱拡散で標的表面まで輸送し,そこから蒸発した原子 をイオン源でイオン化(通常1価)し,静電加速(50 kV 程度)の後,電磁石による質量分離器で目的の同位体イオ ンを取り出す.この過程において,その効率は元素の化学 的性質に強く依存し,生成後イオンビームとして取り出す までに要する時間も元素によって大きく異なる.

近年、中間エネルギー重イオンビームを用いた入射核破 砕片分離法が開発され、極短寿命核を含んだ4000種類も の核種を取り出すことができるようになった。この方式で は、核子あたり100 MeV 程度のビームを薄いターゲット に照射し、ビームイオンの一部が剝ぎ取られて出てくるビ ームをそのまま電磁分析器で選り分ける。この方式の鍵 は、出力ビームの速度がほぼ一定かつ荷電状態が全裸もし くはそれに近いとみなせることである。これによって双極 電磁石による磁気剛性分離において質量数と荷電数の比 (*A*/*Z*) で分離することができる。さらに減速板を透過さ せると、質量と荷電によって異なるエネルギー減衰が起こ るため、もう一度双極電磁石で分離すれば原理的には単一 の核種を選り分けることができる。この方式では、生成分 離過程に化学過程がなく、飛行時間以外の時間損失もない ので、生成されうる全元素の同位体を得ることができる。

ところが、この分離器で得られる不安定核ビームはエネ ルギーが核子あたり 100 MeV 程度と高く、かつその広が りは数% にも及び、光学的分光には全く適していない。 筆者らは、入射核破砕片分離器から得られる高速不安定核 ビームを高効率で減速冷却し低速不安定核ビームもしくは トラップされた不安定核イオンを得るための新しい手 法-RF イオンガイド法-を開発した²²⁻²⁴.

高速不安定核ビームは、いったん厚い減速板を透過させ エネルギーを核子あたり数 MeV まで粗減速する。この減 速法では 0~10 MeV まで大きなエネルギー広がりをもつ のでそのままでは使えない.そこでこのビームを0.1気圧 程度の He を充填したガスセル中で熱化させ,それを静電 場と不均一 RF 電場を用いて真空中に導き出す.ガス中で のイオンのドリフト運動は電気力線に沿うため,単純な静 電場だけでは必ずイオンは陰極に吸い付いてしまいセルの 外へ引き出すことができない.そのため,RF イオンガイ ド法では,陰極として RF カーペットと名付けた多数の円 環電極からなる電極を用い,その円環に交互に位相の異な る高周波電圧を印加する.電極表面には不均一高周波電場 が生成され,表面から跳ね返すような平均電場,いわゆる イオンバリアーによって電極の表面に触れることなく中心 の出口ノズルへと導かれる.

このような原理に基づく新しい低速不安定核ビーム生成 施設建設計画が理化学研究所の加速施設 RIBF において 進行中である(図7).ここでは、イオントラップばかり でなく、コリニアファーストビーム法によるレーザー分光 や、質量測定、崩壊様式測定等、高純度低速不安定核ビー ムの特性を生かした研究が計画されている.

4. 光学的原子核分光の将来

分光可能な原子核の種類を広げるためには、ビーム生成 法ばかりでなく、分光技術の開発も重要である。最後に、 核分光のための新しい光学的手法を紹介したい。

理化学研究所の松尾・古川らは,超流動液体へリウム中 の中性原子の新しい分光法を開発した。液体へリウム中の 原子は周囲のヘリウムの圧力を受けて吸収スペクトル線が 大きく(数十 nm)シフトし,かつ10 nm 以上に広がった ものになる。一方,脱励起時の蛍光はほぼ真空中のスペク トル線に近い波長となる。一見精密分光には向かないよう にみえるが,励起光と脱励起光の波長が大きく異なる点 は,実用上大きな S/N 比の向上に貢献する。光学的転移 の分光には向かないが,基底準位の超微細構造は大きな影 響を受けることなく精密分光できることが示された²⁵⁾.ご く少数しか得られない不安定核の新たな高感度分光法とし て期待される手法である.

京都大学の中嶋は、パルスレーザーを用いた新しい核偏 極法を提案している²⁶. 円偏向した極短パルスレーザーで 微細構造の区別なく同時に励起すると、励起準位において 軌道角運動量とスピン角運動量との間の相互作用によっ て、スピン偏極度が分離エネルギーによって決まる短い周 期で変化する.これは関与する全原子において同期してい る.第一パルスで励起の後、一定の遅延をもって別のパル スレーザーでイオン化することによって偏極を固定するこ とができる.この方式では、パルスレーザーを用いるた め、波長や原子準位構造的に分光が難しかった元素にも適 用しやすいという利点もある.Sr 原子の電子スピン偏極 についてすでに実験的に確認されており²⁷⁾、原子核の偏極 の検証が待たれる.

原子核全体からすると、これまでに何らかの方法でアク セスできている核種はまだほんの一部である。光学的手法 による高感度・高精度の核分光は、低速ビーム生成技術と 新しい分光法によって今後大きく展開していくことが期待 される。

本稿を終えるにあたり,共同研究者各位に謝意を表したい。とりわけ岡田邦宏,中村貴志,高峰愛子の各氏の尽力なしには実験は遂行できなかった。また片山一郎,大谷俊介,山崎泰規の各氏には,研究開始当初から多年にわたり熱心なご支援をいただいた。実験は,電気通信大学レーザーセンター,理化学研究所仁科センターの施設を使用して行われている。ここに感謝する。

文 献

- E. W. Otten: "Nuclear radii and moments of unstable isotopes," *Treatise on Heavy-Ion Science*, Vol. 8, ed. D. A. Bromley (Plenum Press, New York, 1989) pp. 517–638.
- H.-J. Kluge and W. Nörtershäuser: "Lasers for nuclear physics," Spectrochim. Acta B, 58 (2003) 1031–1045.
- J. Billowes: "Laser spectroscopy with cooled beams," Nucl. Phys. A, 752 (2005) 309c-316c.
- R. H. Dicke: "The effect of collisions upon the Doppler width of spectral lines," Phys. Rev., 89 (1953) 472-473.
- J. C. Bergquist, W. M. Itano and D. J. Wineland: "Recoilless optical absorptions and Doppler sidebands of a single trapped ion," Phys. Rev. A, 36 (1987) 428-430.
- 6) W. Pauli: "The theoretical significance of the satellites of some spectrum lines and the effect on them of magnetic fields," Naturwissenschaften, 12 (1924) 741-743.
- A. Bohr and V. F. Weisskopf: "The influence of nuclear structure on the hyperfine structure of heavy elements," Phys. Rev., 77 (1950) 94-98.
- 8) H. DeVries, C. W. DeJager and C. DeVries: "Nuclear charge-density-distribution parameters from elastic elec-

tron scattering," Atom. Data Nucl. Data, 36 (1987) 495-536.

- Z.-C. Yan and G. W. F. Drake: "Bethe logarithm and QED shift for lithium," Phys. Rev. Lett., 91 (2003) 113004-(1-4).
- 10) Y. Hirayama, T. Shimoda, H. Izumi, A. Hatakeyama, K. P. Jackson, C. D. P. Levy, H. Miyatake, M. Yagi and H. Yano: "Study of ¹¹Be structure through β-delayed decays from polarized ¹¹Li," Phys. Lett. B, **611** (2005) 239-247.
- E. Arnold, J. Bonn, A. Klein, R. Neugart, M. Neuroth, E. W. Otten, P. Lievens, H. Reich, W. Widdra and the ISOLDE Collaboration: "Quadrupole moment of ¹¹Li," Phys. Lett. B, 281 (1992) 16-19.
- P. G. Hansen and B. Jonsen: "The neutron halo of extremely neutron-rich nuclei," Europhys. Lett., 4 (1987) 409-414.
- 13) I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi and N. Takahashi: "Measurements of interaction cross sections and nuclear radii in the light p-shell region," Phys. Rev. Lett., 55 (1985) 2676-2679.
- 14) L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O'Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer and X. D. Tang: "Laser spectroscopic determination of the ⁶He nuclear charge radius," Phys. Rev. Lett., 93 (2004) 142501-(1-4).
- 15) P. Mueller, I. A. Sulai, A. C. C. Villari, J. A. Alcántara-Núñez, R. Alves-Conde, K. Bailey, G. W. F. Drake, M. Dubois, C. Eleóon, G. Gaubert, R. J. Holt, R. V. F. Janssens, N. Lecesne, Z.-T. Lu, T. P. O'Connor, M.-G. Saint-Laurent, J.-C. Thomas and L.-B. Wang: "Nuclear charge radius of ⁸He," Phys. Rev. Lett., **99** (2007) 252501-(1-4).
- 16) R. Sánchez, W. Nörtershäuser, G. Ewald, D. Albers, J. Behr, P. Bricault, B. A. Bushaw, A. Dax, J. Dilling, M. Dombsky, G. W. Drake, S. Götte, R. Kirchner, H.-J. Kluge, T. Kühl, J. Lassen, C. D. Levy, M. R. Pearson, E. J. Prime, V. Ryjkov, A. Wojtaszek, Z.-C. Yan and C. Zimmermann: "Nuclear charge radii of ^{9,11}Li: The influence of halo neutrons," Phys. Rev. Lett., **96** (2006) 033002-(1-4).
- 17) I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni, K. Sugimoto, N. Takahashi, T. Shimoda and H. Sato: "Measurement of interaction cross sections using isotope beams of Be and B and isospin dependence of the nuclear radii," Phys. Lett. B, **206** (1988) 592–596.
- 18) T. Nakamura, M. Wada, K. Okada, A. Takamine, Y. Ishida, Y. Yamazaki, T. Kambara, Y. Kanai, T. M. Kojima, Y. Nakai, N. Oshima, A. Yoshida, T. Kubo, S. Ohtani, K. Noda, I. Katayama, V. Lioubimov, H. Wollnik, V. Varentsov and H. A. Schuessler: "Laser spectroscopy of ^{7,10}Be⁺ in an online ion trap," Phys. Rev. A, **74** (2006) 052503-(1–5).
- T. Fujita, K. Ito and T. Suzuki: "Hyperfine anomaly of Be isotopes and anomalous large anomaly in ¹¹Be," Phys. Rev. C, 59 (1999) 210-214.
- 20) T. Nakamura, S. Ohtani, M. Wada, K. Okada, I. Katayama and H. A. Schuessler: "Ion dynamics and oscillation frequencies in a linear combined trap," J. Appl. Phys., 89 (2001) 2922-2931.
- 21) T. Nakamura, M. Wada, K. Okada, I. Katayama, S. Ohtani and H. A. Schuessler: "Precision spectroscopy of the Zeeman splittings of the ⁹Be⁺ 2 ²S_{1/2} hyperfine structure for nuclear structure studies," Opt. Commun., **205** (2002) 329– 368.
- 22) M. Wada, Y. Ishida, T. Nakamura, Y. Yamazaki, T. Kambara, H. Ohyama, Y. Kanai, T. M. Kojima, Y. Nakai, N. Ohshima, A. Yoshida, T. Kubo, Y. Matsuo, Y. Fuku-

yama, K. Okada, T. Sonoda, S. Ohtani, K. Noda, H. Kawakami and I. Katayama: "Slow RI-beams from projectile fragment separators," Nucl. Instrum. & Methods B, 204 (2003) 570-581.

- 23) A. Takamine, M. Wada, Y. Ishida, T. Nakamura, K. Okada, Y. Yamazaki, T. Kambara, Y. Kanai, T. M. Kojima, Y. Nakai, N. Oshima, Y. Yoshida, T. Kubo, S. Ohtani, K. Noda, I. Katayama, P. Hostain, V. Varentsov and H. Wollnik: "Space-charge effects in a catcher gas cell of an rf ion guide," Rev. Sci. Instrum., **76** (2005) 103503-(1-6). 24) 和田道治:"SLORI-汎用低速 RI ビーム生成法一,"日本物
- 理学会誌, 61 (2006) 248-255.
- 25) T. Furukawa, Y. Matsuo, A. Hatakeyama, Y. Fukuyama, T. Kobayashi, H. Izumi and T. Shimoda: "Measurement of a long electronic spin relaxation time of cesium atoms in superfluid helium," Phys. Rev. Lett., 96 (2006) 095301-(1-4).
- 26) 中嶋 隆:"パルスレーザー誘起スピン偏極",日本物理学会 誌, 62 (2007) 230-237.
- 27) Y. Matsuo, T. Kobayashi, N. Yonekura and T. Nakajima: "Photoionization characteristics of Sr into 5skl continua through the spin-resolved ion detection by laser-induced fluorescence," Jpn. J. Appl. Phys., 46 (2007) 1181-1185.

(2008年3月11日受理)