高パルスエネルギー Yb 添加バルク固体レーザー

河仲準二

Recent Status of Yb-Doped High Power Laser and Its Prospect

Junji KAWANAKA

Both high pulse energy and high average power have been required for the advanced high power laser applications such as neutron source, laser lightening and so on. A fusion reactor laser development has driven advanced laser technologies so far. Diode-pumped solid-state lasers are a reliable laser system for these applications and ytterbium-doped material is the most promising laser material due to its high energy storage capability and suitable spectrum for high power laser diodes. "GENBU"-laser has been conceptually designed for not only a reactor driver development but also the advanced application fields with high power lasers. New technologies of a cryogenic Yb:YAG laser material and an active mirror amplification increased a reliability of "GENBU"-laser. The recent status of 1-J, 100-Hz laser system with liquid-nitrogen-cooled Yb:YAG has been shown.

Key words: ytterbium-doped material, high power laser, diode-pump, solid-state laser, cryogenic material

核融合炉用レーザーには高パルスエネルギーと繰り返し 動作が必要であり、いわゆる高出力レーザーの基盤技術開 発を牽引してきた。多数のモジュールによってメガジュー ル級のパルスエネルギーを発生するため、1 kJ、10 Hz の レーザーシステムの構築がマイルストーンであった。ロー レンスリバモア国立研究所(LLNL)や大阪大学では半導 体レーザー(LD)励起による固体レーザーが最も有力な候 補として Mercury レーザーおよび HALNA レーザーを それぞれ開発し、65 J、20 Jを 10 Hz で達成している^{1,2}.

近年,ピコ秒~フェムト秒の超短パルスレーザーの進歩 によって数ジュールのパルスエネルギーで10²⁰ W/cm² を 超えるようなレーザー集光強度が得られるようになり,ト ンネルイオン化,自己位相変調,クーロン爆発,レーザー 加速など,新しい物理現象が次々と明らかにされてきた. さらに高いピーク出力を得ることにより,荷電粒子による 相対論検証や真空からの電子対生成など興味ある物理現象 が予測されている.物理研究以外にも,超短パルスレーザ

ーによる高エネルギーの荷電粒子や中性子ビームを使った がん治療などの医療応用³⁻⁵⁾、レーザー駆動γ線による核 変換6-8)を利用した高レベル放射性廃棄物処理などの産業 利用が期待できるようになった. 超短パルスレーザーの主 役はチタンサファイアレーザーや,近年簡易な光学系で広 い増幅利得帯域が得られる光パラメトリックチャープパル ス増幅 (OPCPA) であり⁹⁾, さらなるパルスエネルギーの 増大によってピーク強度の増加が試みられるようになって いる。一般的にチタンサファイアレーザーや OPCPA の 励起源には Nd(ネオジウム)系レーザーの二倍高調波が 用いられ、ジュール級までは Nd: YAG を、それ以上の パルスエネルギーに対しては Nd ガラスをレーザー材料と したフラッシュランプ励起レーザーを使用している。した がって、繰り返し動作はそれぞれ10Hz、単一ショットに 制限されている。将来の物理研究や産業応用では、高いパ ルスエネルギーによるレーザーピーク強度の増加と高繰り 返し動作が期待されるため,パワーソースとして高パルス

大阪大学レーザーエネルギー学研究センター(〒565-0871 吹田市山田丘 2-6) E-mail: kawanaka@ile.osaka-u.ac.jp

エネルギーと高平均出力を両立する次世代高出力レーザー の基盤技術がますます重要になると考えられる.これらの 基盤技術は炉用レーザーのものと基本的に同一である.

上述の背景のもとに、IFE フォーラム/レーザー核融合 技術振興会では大出力レーザー開発委員会(平成18年1 月~平成19年5月)を設立し、大出力レーザーの応用研 究に関する調査(図1参照)と大出力レーザーの将来技術 のあり方が議論された⁸⁾.その結果、将来期待される物理 研究や産業応用に求められるレーザーとして、"玄武 (GENBU, Generation of <u>ENergetic Beam Ultimate</u>)"レ ーザーが提案された。これはピコ秒大出力レーザーと超短 パルスレーザーを融合しており、炉用レーザーにつながる 次世代大出力レーザーの基盤技術を確立するものとして期 待している.本稿では、"玄武"レーザーの概略と、ピコ 秒大出力部を構成する主レーザーについて紹介する. 1. 玄武 (GENBU) レーザー

炉用ドライバーを将来の目標とし、同時に、きわめて近 い将来の種々の産業応用に供する次世代高出力レーザーの 基盤技術を確立するため2つの開発目標を設定した(図2 参照).

- (1) 主レーザー: パルスエネルギー1kJ, パルス幅 50~100 ps, 繰り返し16~100 Hz.
- (2) 超高強度レーザー: パルスエネルギー30 J, パルス幅 5~10 fs, 繰り返し16~100 Hz, ピーク出力>1
 PW,集光強度>2×10²¹ W/cm².

これらの2つのレーザーを結合したシステムを,"玄武" レーザーとして概念設計を行った(図2).主レーザーは 小型, 高効率, 長寿命, 簡易操作, 簡易メンテナンスを実 現するため LD 励起固体レーザーとした。主レーザーはピ コ秒パルスであり、 ピコ秒パルスの 増幅にはそのまま 増幅 する直接増幅と,時間的にナノ秒に伸長し増幅後にピコ秒 に時間圧縮するチャープパルス増幅 (CPA) が考えられ る。最近の高耐力回折格子の実現や新規分散素子の開発な ど,将来の大出力レーザーの基盤技術開発の観点から CPA を採用した. 主レーザーは超高強度レーザーで用い る数サイクルパルスの広帯域の OPCPA の励起源として も利用するため、増幅器の構成を2段とした。初段増幅器 の出力をOPCPAの励起源として利用するとともに、2段 目増幅器を経てキロジュール出力を得る。このエネルギー 増幅部のレーザー材料として,次章で述べる低温冷却型 Yb: YAG セラミクスを使用する.一方,超高強度レーザ -の増幅には、チタンサファイアと光パラメトリック増幅 (OPA) が候補として挙げられる。広い増幅帯域、低い熱 発生量,高いコントラスト,簡易な光学構成の観点から OPA とした.励起レーザーとシード光との時間同期は出

Main Laser

図2 "玄武" レーザーの構成.

力安定性における大きな課題のひとつである. ピコ秒パル スの同期を電気光学素子などの能動光学素子で行うことは きわめて難しいことから,"玄武"レーザーでは主レーザ ーと OPCPA レーザーのフロントエンドを共用すること にした. OPCPA レーザーでは 600 nm の広帯域のスペク トルが要求されるため,フロントエンドからのフェムト秒 パルスをサファイアガラスなどに照射して発生する白色コ ヒーレント光をシード光として用いる.3段の OPCPA の 増幅後に,パルス圧縮器により最大ピーク出力 6 PW を目 指す.

2. 高出力レーザー材料としての低温冷却型 Yb: YAG セラミクス

高パルスエネルギーと高繰り返し動作を両立できるパワ ーソースとなるような次世代の高出力レーザーシステムで は、特にレーザー媒質内で発生する多量の熱発生が大きな 問題となることから、効率のよい半導体レーザー励起固体 レーザーが有力な候補である。これに適したレーザー材料 に求められる条件を考えてみると、

- エネルギー蓄積能力が高い(誘導放出断面積が小さい)こと
- ② 熱耐力が高いこと
- ③ 口径の大きな材料が作れること
- ④ 高出力 LD の発光帯域である近赤外域に吸収を有す ること

が主として考えられる。従来,炉用ドライバーのような極 端に大きなパルスエネルギーを必要とする場合に③ が必 要条件であるため,Nd ガラスがレーザー材料として利用 されてきた。近年の YAG 結晶については、レーザーで使 用できるような高い光学品質のセラミクスが利用できるこ とから、②および③の両立の可能性が出てきた。最近研 究が盛んなイッテルビウム系レーザー材料は①および④ を満たしているため、Yb:YAG セラミクスは上記の条件 をほぼ満足している. これまでも, 同材料を用いて数多く のレーザー開発がなされてきた10-14). しかし,特にパル ス動作時のパルスエネルギーなどの諸特性は Nd 系材料と 大きな違いはなく,現状では同材料の特徴を十分に引き出 せていない。これは、Yb系材料の誘導放出断面積はNd 系材料に比べて1桁程度低く,エネルギー引き出しの指標 とされる飽和フルーエンス ($U_{\text{sat}} = h\nu/\sigma$, h:プランク定 数、 ν : レーザー周波数、 σ : 誘導放出断面積、 U_{sat} はレ ーザー材料に蓄積されたエネルギーを効率よく引き出すた めに必要な入射レーザー光のエネルギーフルーエンスの指 標)が高すぎること,例えば AR コートの代表的なダメー

ジ閾値 (1 ns パルスに対して 10 J/cm²) よりも高いことが 原因のひとつである。したがって、高いストークス効率 $(h\nu_{\text{laser}}/h\nu_{\text{pump}}>0.9)$ にもかかわらず、光学系ダメージの 制限を受けて増幅器のエネルギー引き出し効率を上げるの は難しい。そこでマルチパス増幅などにより、実効的なエ ネルギーフルーエンスを上げる工夫が必要である.また, Yb 系材料は準三準位系レーザー材料であるので、レーザ 一利得を得るためにはレーザー下準位を吸収飽和させるこ とが前提条件であり、十分な利得を得るためには数十~数 百 kW/cm²の強励起が必要である。同時に、下準位のシ ュタルク分裂幅が室温程度であることから, レーザー材料 の温度によってレーザー下準位の分布が敏感に影響するた め、温度の上昇は利得の低下につながる。したがって、 Yb 系材料は高出力レーザーに適しているが、本来有する 特徴を十分に発揮するために、次に述べるような開発項目 が重要となる。

- 光学系を破壊しない条件下でのエネルギー引き出し 方法(高耐力の薄膜技術の確立,マルチパス増幅な ど)
- ② 基底状態を吸収飽和させる強い光強度をもった励起 装置

③ 下準位の熱励起を避ける効果的な冷却方法

一般に、材料の物性値は温度に多かれ少なかれ依存す る.いくつかのレーザー材料の誘導放出断面積と熱ショッ クパラメーターを図3に示す.Yb:YAGについては温度 依存性も示した.Yb:YAGのレーザー発振波長における 誘導放出断面積のピーク値は100K以下で7倍に増加し, 結果として飽和フルーエンスも7分の1(1.5J/cm²)と光 学系のダメージ閾値以下に低減されることから、高効率な エネルギー引き出し動作が期待できる.吸収スペクトル幅

図4 Yb: YAG の熱伝導率の温度依存性.

は若干狭くなるが、LD の高精度温度制御の必要がないほ ど十分に広い、一方で、わずかながらも吸収断面積が増加 することで結晶厚を薄くでき、冷却による温度上昇を低減 できる。さらに、低温時には熱伝導率は大幅に向上し(図 4)^{15,16)}, それに伴う熱ショックパラメーターの増加も期待 できる. Yb³⁺イオンのドープ量によって違いがあるもの の、50K程度までは冷却するほど熱伝導率は向上する。 再吸収についても次のように改善される。シュタルク分裂 したレーザー下準位の熱的な分布の中心は、マクスウェ ル・ボルツマン分布に従い温度の低下とともに最下準位に 近づく. Yb: YAG では 100 K 以下に冷却することでレー ザー下準位の分布がほぼゼロとみなせるようになり,理想 的な四準位レーザー材料となる17)。低温冷却には真空が必 要であり、レーザーシステムとして複雑になるように思わ れるが、室温時における前述の開発項目を達成するための 工夫や装置,結果として得られるレーザーの安定性などを 考慮すると、次に述べるように低温冷却による性能向上は 際立っている.

前述のように、低温冷却によって Yb: YAG の物性値は

室温時とは全く異なる新しい結晶といえるほどに変化し, 大出力レーザー材料として室温時に比べて格段にすぐれた 特性を示す.最近のわれわれの成果では,サファイア板で サンドイッチした Yb: YAG ディスクにより 106 W の励 起入力に対して 75 W のレーザー出力を¹⁸,また, Ripin らが冷却 Yb: YAG ロッドにより 215 W 入力に対して 165 W 出力を¹⁹⁾,ともに TEM₀₀ モードで得ている.

低温冷却型 Yb: YAG 増幅器—主レーザーの概念 設計

3.1 構 成

主レーザーの構成を図5に示す.フロントエンドには, 高い安定性が求められるためファイバーレーザーシステム を採用した.パルス幅30fsのファイバー発振器の出力 を,パルスピッカーによって100Hzに繰り返しを低減 し,さらに,ファイバーパルス伸張器により1ns程度に 伸張した後にファイバー増幅器により2mJ出力を得る. この後,パルスエネルギーの増力を行うために,低温冷却 型Yb:YAGセラミクスを用いた増幅を行う.グレーティ ングペアによるパルス伸張器によって3nsに再度伸張し, 前置増幅器,主増幅器によりパルスエネルギーを200Jに 増力する.OPCPAの励起源として利用する場合,この時 点で取り出してグレーティングペアによってパルス圧縮, 二倍高調波変換し75Jのピコ秒パルスを得る.最終的に はさらに増幅し、2kJ出力を得る.

3.2 高出力増幅器

主レーザーは OPCPA の励起源など実用的な応用が主 目的であることから,100 Hz の繰り返し動作で発生する 熱問題を解決すると同時に,良質なビーム品質を得ること が重要である.アクティブミラー型増幅方式は光学系を簡 単にでき,比較的高い熱除去能力とエネルギースケーリン グの容易さの観点から,主レーザーの増幅方法として採用

13 (13)

表1 200 Jおよび2 kJの主増幅器の使用。

	200 J-sytem	2 kJ-system
ヒートシンクの温度	$50~{ m K}$	50 K
ビーム径	10.4 cm	32.6 cm
ディスクの厚さ	2 cm	4 cm
最小ディスク数	4 disks	7 disks
小信号利得係数 g。	0.29 cm^{-1}	0.092 cm^{-1}
蓄積エネルギー	74 J/disk	461 J/disk
引き出しエネルギー	41 J/disk	258 J/disk
励起強度	1.7 kW/cm^2	$2.1 \mathrm{kW/cm^2}$
必要な LD 出力	140 kW/disk	920 kW/disk

した. レーザー材料表面におけるレーザー光の干渉による ダメージ閾値の低下の点で劣るが,低温冷却型 Yb:YAG による飽和フルーエンスの低減により,高効率のエネルギ ー引き出しが実現可能な範囲である.

アクティブミラー表面でのレーザー光の干渉を考慮し て、レーザー材料の光学ダメージ閾値を2J/cm²と低く見 積もった場合,200J,2kJの2つの主増幅器のディスク サイズと枚数を表1にまとめる。寄生発振閾値条件を goL<3,引き出し効率を0.56と仮定した(go:小信号利 得係数, L:利得長). 200 J, 2 kJ 出力に必要なビームロ 径およびアクティブミラーの枚数は, それぞれ最低で 10.4 cm, 4 枚, 32.6 cm, 7 枚である. これまでの実験デ ータから,必要な励起強度は2kW/cm²程度と,室温で 利用される Yb 系材料に比べれば1桁以上低い。現在の商 用LDアレイの平均発光面強度と同程度であることから, LDの占める面積はYb:YAGセラミクスと同程度であ る。Yb: YAG の冷却温度は、飽和フルーエンスとダメー ジ閾値とのバランスで決まるため100K以下に冷却する。 また、100 Hz 動作時の熱による影響を見積もるためアク ティブミラー内温度上昇を計算すると、例えば、励起強度 1.7 kW/cm² でヒートシンク温度 50 K であれば,厚さ 20 mm までのアクティブミラーは四準位動作を維持できる 100 K 以下で動作できる。図 6 は 200 J 級主増幅器の構成 を示す。光学系の大きさは1m×0.7mとコンパクトであ り、2kJ級においても同方式で実現可能である。電源部 などを除いたレーザーシステム全体の光学系サイズは1 kJ, ピコ秒システムで12m×6mと実験室サイズである.

1kJのピコ秒レーザーシステムに必要な主増幅器の全 電力は1.7 MW,レーザー光への変換効率は5.8%と見 積もられた.従来のキロジュール級レーザーに比べて,2 桁以上高いことがわかる。所要電力は主増幅器の電気入力 が大部分であり、レーザー材料の冷却とLDの冷却にはほ ぼ同程度の電力が必要である。コストについては、LDな どのように発注量によって低コスト化が図れるものが多い

ため高い精度で見積もることは難しいが,おおむね 20億円である.

3.3 技術開発の問題点

"玄武"レーザーは高パルスエネルギーと高繰り返しの 両立を図っており,従来の高パルスエネルギーレーザーの 最高平均出力に比べ2桁,商用レーザーに比べて4桁程度 大きい. したがって, その実現にはさまざまな基盤技術開 発が必要である。高耐力の光学薄膜技術の開発は、Yb系 材料にとって最も必要な基盤技術開発のひとつである。こ れによりエネルギーフルーエンスを高くでき,アクティブ ミラーはいっそう効率よく動作できる。レーザー材料に薄 膜を用いる場合には,低温下での膜特性の解明も重要であ る、半導体レーザーの高輝度化は、従来より Yb 系の高強 度励起のために強く必要とされてきた。加えて、本設計で は半導体レーザーの省スペース化による広い設計の自由度 と,そこから生まれる小型化・高安定化を目標としてい る.具体的には,200 W 以上のバーによる1 mm 間隔の スタックおよび対応するマイクロレンズが実現できれば. 従来の5倍の輝度が得られ、ビーム口径の縮小化やより高 い温度での効率よいレーザー動作が期待され、装置の小型 化・高効率化が図れる。ビーム口径の縮小化により、ファ ラデー素子やポッケルスセル,可変形鏡,グレーティング などの能動光学素子の大きさも縮小できる。さらに、これ らの光学系に対しても, 高平均出力化による熱問題の検討 が必要である.また,低温冷却に必要なエネルギーを含め た全エネルギー変換効率を極端に改善することは現在では 難しく、高効率の冷却装置の開発も期待したい。

4. 低温冷却型 Yb: YAG による 1 J, 100 Hz レーザ ーシステムの開発

低温冷却型 Yb: YAG の高エネルギーフルーエンス動作 を実証するため、1 J、100 Hz のナノ秒レーザーシステム を開発中である。システム構成は図7に示すように、縦単 ーモードファイバー発振器の CW 出力からパルス成形器 を使って10 ns、10 pJ のパルスを切り出し、再生増幅器

図7 1J, 100 Hz レーザーのシステム構成.

図8 1J, 100 Hz システムの4パス主増幅器。

のシード光とする。再生増幅器では、150Wのファイバ ー結合型 LD を励起源として用いた。レーザー材料は厚さ 2mm, ドープ濃度10at.%のアクティブミラー型で, イ ンジウムにより同ホルダーに固定して,液体窒素で熱伝導 冷却した。励起時間1ms,繰り返し100Hzで,最大4.5 mJのパルスエネルギーが得られた。ビーム形状はガウシ アンで, M²~1.1を達成している. 主増幅器は, 図8に 示すように4パス増幅器である。励起源には、ピーク出力 2.5 kW のファイバー結合型 LD を2台用いている。レー ザー材料は直径12mm,長さ6.6mm,ドープ濃度5 at.%のYb:YAGロッドであり、これを銅ホルダーで挟 み込み液体窒素により熱伝導冷却している。励起時間を変 化させたときのパルスエネルギーを図9に示す。最大144 mJを100Hzで得た。それ以上の励起に対しては、自然 放出光の増幅による損失 (ASE 損失) により出力飽和して いる.光-光変換効率およびスロープ効率の最大値はおの おの30%,44%と高かった。レーザーロッドの増加によ りASEを抑制することで、1J以上の出力増加が見込ま れる.

レーザー核融合炉用ドライバーと次世代大出力レーザー に必要な要素技術開発を目的に、レーザーの仕様目標とし て1kJの高パルスエネルギーと6PWの超高ピーク強度 を100Hzの繰り返しで実現する"玄武(GENBU)"レー

ザーを提案した.特に,1kJ,100 Hzの主レーザーシス テムの概念設計を紹介した.現実的なレーザーの概念設計 ができるまでになった基盤技術として,Yb系セラミクス 技術の確立と高出力半導体レーザーの高出力化が挙げられ る.技術的なブレークスルーは,低温冷却によるレーザー 材料の物性値制御である.現在,1J,100 Hzの低温冷却 型 Yb:YAGレーザーシステムを実証実験として開発中で あり,本年度の実現を目指している."玄武"レーザー実 現のためには,薄膜技術の高度化や半導体レーザーの高輝 度化,アクティブミラー型高出力増幅器の実証など多くの 重要課題が残されているが,近い将来に解決できるものと 期待している.本レーザーの実用化によって新しい産業応 用が実現でき,さらに,その延長上には炉用レーザーの実 現があるものと考えている.

本解説でご紹介した冷却型光学素子の概念は,電気通信 大学レーザー新世代研究センターの西岡一先生との共同研 究のころに着想に至った。また,浜松ホトニクス(株)の管 博文博士,川嶋利幸博士,安原亮博士,京都大学化学研究 所の時田茂樹先生には実証実験による基本的なデータベー スの構築や,1Jシステムの構築に多大な貢献をいただい た。日本原子力研究開発機構の山川考一博士には OPCPA の基本設計を行っていただいた。そのほか数多くの方々の ご協力をいただいた。ここに深く感謝いたします。

文 献

- A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird and C. Barty: "High-average-power femto-petawatt laser pumped by the Mercury laser facility," J. Opt. Soc. Am. B, 25 (2008) B57– B61.
- 2) T. Kawashima, T. Ikegawa, J. Kawanaka, N. Miyanaga, M. Nakatsuka, Y. Izawa, O. Matsumoto, R. Yasuhara, T. Kurita, T. Sekine, M. Miyamoto, H. Kan, H. Furukawa, S. Motokoshi and T. Kanabe: "The HALNA project: Diodepumped solid-state laser for inertial fusion energy," J. Physique IV, **133** (2006) 615-620.
- 3) 山田 聡: "加速器によるがん治療の最前線",日本物理学会 誌,61 (2006) 401-407.
- 4) レーザー学会編: 39章 "治療",レーザーハンドブック,第2版(オーム社,2005) p. 981.
- 5) 今崎一夫:"レーザー光子一電子散乱による高エネルギー放 射光とその利用",レーザー研究,27 (1999) 14-19.
- 6) K. W. D. Ledingham, J. Magill, P. McKenna, J. Yang, J. Galy, R. Schenkel, J. Rebizant, T. McCanny, S. Shimizu, L. Robson, R. P. Singhal, M. S. Wet, S. P. D. Mangles, P. Nilson, K. Krushelnick, R. J. Clarke and P. A. Norreys: "Laser-driven photo-transmutation of ¹²⁹I—A long-lived nuclear waste product," J. Phys. D, Appl. Phys., **36** (2003) L79-L82.
- 7) F. Tavella, A. Marcinkevicius and F. Krausz: "90mJ par-

ametric chirped pulse amplification of 10 fs pulses," Opt. Exp., 14 (2006) 12822-12827.

- 8)「新産業基盤の創生をめざす次世代大出力レーザー開発計画」 大出力レーザー開発委員会報告書(IFEフォーラム/レーザー 核融合技術振興会,2007年5月).
- 9) T. Jitsuno et al.: Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), TuO3.3 (2007).
- E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton and S. A. Payne: "High-power dual-rod Yb:YAG laser," Opt. Lett., 25 (2000) 805-807.
- T. Taira, W. M. Tulloch and R. L. Byer: "Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers," Appl. Opt., 36 (1997) 1867–1874.
- 12) E. Innerhofer, T. Sudmeyer, F. Brunner, R. Haring, A. Aschwanden, R. Paschotta, C. Honninger, M. Kumkar and U. Keller: "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett., 28 (2003) 367-369.
- 13) C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton and K. S. Jancaitis: "High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron., 34 (1998) 2010–2019.
- 14) W. F. Krupke: "Ytterbium solid-state lasers. The first decade," IEEE J. Sel. Top. Quantum Electron., 6 (2000) 1287–1296.
- D. N. Nikogosyan: Properties of Optical and Laser-Related Materials: A Handbook (John Wiley & Sons, Chichester, 1997) p. 20.
- 16) F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson and R. Equall: "Laser demonstration of $Yb_3Al_5O_{12}(YbAG)$ and materials properties of highly doped Yb:YAG," J. Quantum Electron., **37** (2001) 135–144.
- 17) J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda and Y. Izawa: "Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature," Laser Phys., 15 (2005) 1306–1312.
- 18) S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima and Y. Izawa: Advanced Solid-State Photonics 2005 (ASSP 2005, OSA Topical Meeting) MF45 TOPS, 98 (2005) 628-632.
- D. J. Ripin, J. R. Ochoa, R. L. Aggarwal and T. Y. Fan: "165-W cryogenically cooled Yb:YAG laser," Opt. Lett., 29 (2004) 2154–2156.

(2008年12月1日受理)