研究論文

Received January 15, 2009; Revised August 20, 2009; Accepted September 2, 2009

変調 ZnSe 系白色 LED を用いた低コヒーレンス干渉計測

太田 貴之*・中野 万作*・椎名 達雄**・伊藤 昌文*・岡村 康行***

* 和歌山大学システム工学部 〒640-8510 和歌山市栄谷 930

*** 大阪大学大学院基礎工学研究科 〒560-8531 豊中市待兼山町 1-3

Low-Coherence Interferometry Using Time-Modulated ZnSe White Light-Emitting Diode

Takayuki OHTA*, Mansaku NAKANO*, Tatsuo SHIINA**, Masafumi ITO* and Yasuyuki OKAMURA***

* Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510

** Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522

*** Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka 560-8531

The thickness measurement of SiO₂ thin film was performed by low-coherence interferometry using time-modulated ZeSe white light-emitting diode. The blue light component and the fluorescence component were separated at more than the time-modulation frequency of 500 kHz. The coherent length of the fluorescence component was approximately 1.6 μ m and it corresponded to the theoretical value. SiO₂ films with thickness of the order of 1 μ m were successfully measured by using the interference of fluorescence component.

Key words: low-coherence interferometry, white light-emitting diode, thickness measurement

1. はじめに

低コヒーレンス干渉法は、微小距離の測定や物体の微細 な構造や形状、屈折率などを計測する手法として開発され てきた。工学分野では、基板の膜厚や屈折率¹⁾、温度^{2,3)}、 ひずみ⁴⁾計測などに応用されている。また、非破壊、非侵 襲、高空間分解能で内部計測が可能なことから、眼底検 査^{5,6)} や血管診断システム⁷⁾ などの生体組織の断層画像を 得る光コヒーレンストモグラフィー (optical coherence tomography: OCT) として実用化されている。

低コヒーレンス干渉計において,光の干渉はビームスプ リッターから計測対象への光路長と参照ミラーへの光路長 の差がゼロのときを中心にコヒーレンス長以内でのみ起こ る.すなわち,計測対象が透明であるとき,その屈折率境 界面からの反射光により複数の干渉縞が生じる.これらの 干渉縞のピーク間隔を解析することにより,膜厚計測が可 能となる.そのため,低コヒーレンス干渉計の深度方向の 測定分解能は光源に依存し,光源がガウス型スペクトルの 場合のコヒーレンス長は以下の式で表される.

$$l_{\rm c} = \frac{2\ln 2}{\pi} \frac{\lambda_0^2}{\Delta \lambda} \tag{1}$$

ここで λ_0 は中心波長, $\Delta \lambda$ はスペクトル幅(半値全幅)で ある.式(1)より、コヒーレンス長すなわち測定分解能 は、光源のスペクトル幅と波長に依存しており、光源の スペクトル幅が大きいほど、また波長が短いほど小さく なる.

低コヒーレンス干渉計の光源として,スーパールミネセ ントダイオード (super luminescent diode: SLD) が幅広 く用いられており,コヒーレンス長はおよそ 10~20 µm である.低コヒーレンス干渉計の測定分解能を向上させる ためには,コヒーレンス長の小さい光源や測定法の開発が 不可欠となる.光源として,複数の LED 光を合波させて それぞれの LED 光の自己相関関数の和を用いたもの^{8,9)}, 熱光源^{10,11)},スーパーコンティニュウム光^{12,13)} などがあ る.また,近年 OCT 分野では、単一波長走査型光源を用

^{**} 千葉大学工学部 〒263-8522 千葉市稲毛区弥生町 1-33

E-mail: ohta@sys.wakayama-u.ac.jp

Fig. 1 Schematic illustration of emission of white LEDs. (a) ZnSe-based white LED, (b) GaN-based white LED.

いた OCT が研究されており, swept-source^{14,15)} やフーリ エドメインモードロッキング方式¹⁶⁾の光源などさまざま な研究が報告されている。しかし,複数の LED 光を合波 させたものは,分散性媒質の計測時にそれぞれの自己相関 関数のゼロ次位置がずれること,またその他の光源は高価 で大掛かりなシステムになるといった欠点をもっている。 そこで,われわれは,安価で容易に高分解計測が期待でき る白色 LED に注目した。

Fig. 1 (a) に、本研究で用いた ZnSe 系 白色 LED (WZB-52:住友電気工業(株))の構造を, Fig. 1 (b) に広 く市販されている GaN 系白色 LED の構造を示した17,18). ZnSe 系白色 LED はn型 ZnSe 基板上にエピタキシャル 成長させた ZnSe 系 LED の 480~490 nm の EL (electro luminescence)の青色光と、その光を励起光とした基板中 の不純物(ドーパント)による 585 nm をピークとする緑 から赤に至る幅広い自己活性化発光(蛍光)の合成により 高輝度の白色光が発せられる。一方で, GaN 系白色 LED は GaN (gallium nitride) 系青色 LED チップの表面に YAG (yttrium aluminum garnet) 蛍光体が分散した樹脂 を塗布し、チップから放出された青色光の一部を YAG 蛍 光体に吸収させて黄色光に変換し (PL: photo luminescence),直接外に向かった青色光と混合させることで白 色光を得ている19). Fig. 2 に、本研究で用いた ZnSe 系白 色 LED のスペクトルを示す。490 nm 付近の EL 起因の青

intensity (a.u.)

Fig. 2 Emission spectrum of ZnSe-based white LED.

色光と,600 nm をピークとした幅広い自己活性化発光起 因の蛍光色が発光していることがわかる。ZnSe 系白色 LED の特徴として長寿命・高速応答・低消費電力・小型 軽量等が挙げられ,安価で扱いの容易な光源である。

本研究では、ZnSe 系白色 LED の青色光と蛍光の発光 原理の違いに起因する変調応答速度の違いに着目し た^{20,21)}.適当な周波数のパルス変調をかけて ZnSe 系白色 LED を発光させることにより、青色光と蛍光成分に分離 し、ブロードな発光スペクトルを示す蛍光成分のみを抽出 した。この変調 ZnSe 系白色 LED 光源の蛍光成分を用い た低コヒーレンス干渉計により SiO₂ 薄膜の膜厚計測を行 った.

2. ZnSe 系白色 LED の変調特性

ZnSe 系白色 LED はその構造と原理から、駆動電流の 振幅変調をすることによって青色の EL 発光と蛍光の自己 活性化発光の応答速度が異なる. そのため, パルス電流を 印加し振幅変調をかけることで、発光色の分離が可能とな る. Fig. 3 に (a) 50 kHz および (b) 300 kHz の振幅変調 をかけたときの青色光発光と蛍光の強度を示す。青色光は 492 nm, 蛍光は 590 nm の強度を測定した。青色光応答は 印加パルスの形を保持しており, EL 発光が印加電流に対 してリニアに応答していることがわかる。90%の強度ま での立ち上がり時間が約80nsである一方で、蛍光応答は 約2µsである。このことから、青色光応答に対して蛍光 応答は約25倍の時間を要しており、応答性にかなりの差 があることがわかる。 蛍光応答が遅い理由として, 青色 EL 光が基板中のドーパントを励起したのち,自己活性化 発光を生じるという発光原理に起因していることが挙げら れる。また、発光している ZnSe 系白色 LED への電流の 印加を止めると、青色光はほぼ即時に消光を完了するが、 蛍光はゆっくり消光していく. このことから, 蛍光が消光

Fig. 3 Pulse waveforms of blue light and fluorescent light. (a) 50 kHz, (b) 300 kHz.

しきらないうちに再び電流を印加し発光させると、蛍光は 連続発光を示す状態にすることができ、青色光は電流の 印加と同期して連続発光する.Fig.3 (b)のように約300 kHz以上のパルスを印加すると、白色光(青色光+蛍光) と蛍光が交互に現れる色分離状態にすることができる.す なわち、コヒーレンス長の短い蛍光スペクトルのみを用い た干渉計測が可能となった。Fig.4は、印加したパルスの 変調周波数と ZnSe 系白色 LED の光強度の関係をオシロ スコープで観測したものである。帯状信号の上側が白色光 の強度を,下側が蛍光の強度を示している。変調周波数が 500 kHz 付近まで増加するにつれて白色光の強度は小さ くなり、蛍光の強度は大きくなっていることがわかる。こ れは, 蛍光成分の応答が印加電流の変調に追従できないた めに、上述のように変調周波数が増加するに従い、連続発 光状態になるためである。変調周波数が100,300,500 kHz における白色光強度に対する蛍光強度の割合は、そ れぞれ 39%, 51%, 57% となった。したがって, 白色光 成分に対して相対的に大きな蛍光成分の干渉波形が得られ るため、蛍光成分を用いた干渉計測の精度が向上する。ま た,変調周波数 500 kHz 以上では,白色光と蛍光の強度 の割合にほぼ変化がなかった。これらの結果から、本研究 では変調周波数 500 kHz を用いた。

3. 干涉 実 験

3.1 実験方法

Fig. 5 に ZnSe 系白色 LED を用いた干渉計測の光学系 を示す.用いた ZnSe 系白色 LED の出力は 1.9 mW であ る.また,変位計測用光源として波長 850 nm の近赤外 laser diode (LD)を用い,LD の干渉フリンジ数をカウン トすることにより ZnSe 系白色 LED の干渉波形のピーク 間隔,すなわち計測サンプルの膜厚を算出した.ZnSe 系 白色 LED 光および LD 光は誘電多層膜ビームスプリッタ ーで分割され,それぞれ Si-PIN フォトダイオード (PD) と光電子増倍管 (PMT)で測光した.両光源の光路の位 置の違いを利用して,サンプルアームにおいて ZnSe 系白 色 LED 光は計測サンプルにより,近赤外 LD 光は計測ミ ラーによりそれぞれ反射させた.また,PMT の前にバン

Time [20ms/div]

Fig. 4 Dependence of modulation frequency on emission intensities of white light and fluorescent light.

Fig. 5 Experimental set up for low-coherence interferometry using time-modulated ZnSe-based white LED. LED: light emitting diode, LD: laser diode, PD: photo detector, PMT: photomultiplier, BPF: band pass filter.

ドパスフィルター (BPF) を入れることにより, ZnSe 系白 色 LED 光を除去した。参照ミラーの走査速度は 80 µm/s とした。

3.2 ZnSe 系白色 LED の干渉波形

Fig. 6 に変調をかけない場合の ZnSe 系白色 LED の干 渉波形を示す.干渉波形全体は光路長で約16 µm となり, そのエンベロープはガウス型とは異なった概形をしてい る.これは,ZnSe 系白色 LED の干渉波形が青色光成分 と蛍光成分の干渉波形の合成によりできているためであ る.また,各色成分の干渉波形のピーク位置が互いにずれ ていることがわかる.このずれは,誘電多層膜中や分散性 媒質中における青色光成分と蛍光成分の屈折率が異なるた め波長分散を生じ,干渉のピーク位置がずれるものと考え られる.

前章で示したように, ZnSe 系白色 LED にパルス変調

Fig. 6 Interference waveform of ZnSe-based white LED.

をかけることにより、白色(青色光+蛍光)と蛍光に分離 することができた.この結果から、スペクトル幅の広い蛍 光のみの干渉波形を抽出することにより、低コヒーレンス 干渉を用いた計測を分解能よく行うことができる。Fig. 7 に、本研究で用いた計測システムのブロック図を示す.変 調白色 LED 光源を用いた干渉計の干渉信号と変調用参照 信号を積演算することにより、白色成分の干渉波形が得ら れる.また,変調用参照信号を反転させ干渉信号と積演算 することにより、 蛍光成分の干渉信号が得られる. そし て,得られた白色成分から蛍光成分の干渉波形を差分演算 することにより, 青色光成分の干渉信号を得ることができ る. Fig. 8 (a) に変調 ZnSe 系白色 LED の干渉波形を示 す. 上側に白色成分干渉波形が, 下側に蛍光成分干渉波形 が現れていることがわかる。これは, Fig. 3 でみられるよ うに青色光成分と蛍光成分が混ざり白色成分となる光強度 と、 蛍光発光成分の光強度の差があるためである。 下側の 干渉波形をなす蛍光は変調に追従できず連続発光状態にな るため、グランドからのオフセット成分は蛍光成分とな る。ゆえに、変調白色 LED 光源の干渉波形は、上側が白 色成分の干渉で下側が蛍光成分の干渉となる。この測定し た干渉波形から,上述の処理を用いて分離した白色光成

Fig. 7 Block diagram for separating the interferences of white light, blue light, and fluorescent light from measurement result.

Fig. 8 Interference waveforms of time-modulated ZnSebased white LED. (a) Measured interference waveform, (b) white light, (c) blue light, (d) fluorescent light.

Intensity [a.u.]

ground

Fig. 9 Interference waveforms of time-modulated ZnSebased white LED on SiO_2 thickness of 2015 nm. (a) Measured interference waveforms, (b) fluorescent light, (c) Gaussian fitting of interference (b).

分,青色光成分,蛍光成分の干渉波形をそれぞれ Fig. 8 (b)~(d) に示す.Fig. 8(d) のように,蛍光干渉波形の 各フリンジのピーク位置から,ガウス分布を仮定したエン ベロープ処理を行った結果,コヒーレンス長(ここでは干 渉波形の半値全幅とした)は約1.6μmとなり,変調をか けない ZnSe 系白色 LED を用いた干渉波形より,コヒー レンス長を短くすることができた.Fig. 2から蛍光スペク トルの中心波長を 600 nm,半値幅を 120 nm とすると, 式(1)からコヒーレンス長は約1.32μm となり,概ね計 測結果と理論値が一致する結果が得られた.これにより,

Fig. 10 Interference waveforms of time-modulated ZnSebased white LED on SiO_2 thickness of 1043 nm. (a) Measured interference waveforms, (b) fluorescent light, (c) Gaussian fitting of interference (b).

変調 ZnSe 系白色 LED を用いれば、高分解能の干渉計測 が可能であることを示した。

3.3 変調 ZnSe 系白色 LED を用いた厚さ計測

変調 ZnSe 系白色 LED を用いて,SiO₂ 薄膜の厚さを計 測した.サンプルは,Si 基板上にSiO₂ 薄膜を堆積したも のを用いて,SiO₂ 薄膜の厚さを変えて行った.Fig.9に, SiO₂ 薄膜が 2015 nm のときの結果を示す.SiO₂ 薄膜の膜 厚は触針段差計で測定し,5回測定の平均値である.測定 値のばらつきは 10 nm 程度であった.Fig.9(a)は,変調 ZnSe 系白色 LED を用いて SiO₂/Si 界面から SiO₂ 表面で

Fig. 11 Thickness measurement of SiO_2 film using time-modulated ZnSe-based white LED.

測定された低コヒーレンス干渉波形と、LD によるフリン ジカウント用の干渉波形である. Fig. 9 (b) は, Fig. 7 の アルゴリズムを用いて抽出された蛍光成分の干渉波形であ る. この干渉波形は,抽出時に9項の移動平均を10回繰 り返すことにより、ノイズ除去を行った。この干渉波形を 2乗し、各フリンジのピーク位置からガウス分布を仮定し エンベロープ処理を行ったものが Fig. 9 (c) である. この エンベロープのピーク間隔から SiO₂ 薄膜の膜厚を算出し た結果, 2012 nm であった. また, このとき, ZnSe 系白 色 LED の干渉波形のピーク間隔を計測するための LD 干 渉フリンジのピーク位置のばらつきは約80 nm であった. 次に Fig. 10 に厚さ 1043 nm の SiO₂ 薄膜における結果を 示す. Fig. 10 (c) より, 変調 ZnSe 系白色 LED の蛍光成 分を用いて算出した SiO₂ 薄膜は 1106 nm と算出された. これらの結果を用いて, Fig. 11 に触針段差計で測定した 1~2 µm の SiO₂ 薄膜の厚さと,それらを変調 ZnSe 系白 色 LED による低コヒーレンス干渉計で計測した結果を示 す。横軸が段差計で測定した SiO₂ 薄膜の厚さで、縦軸が 変調 ZnSe 系白色 LED を用いて測定した SiO₂ 薄膜の厚 さである。段差計で測定した SiO₂ 薄膜の厚さと変調 ZnSe 系白色 LED を用いた測定値が、ほぼ線形に対応し ている結果が得られた。干渉計を用いた測定誤差の原因と しては、干渉波形の S/N 比が低いことと、Fig. 10 (a) か らわかるように、 ミラースキャナーの速度むらなどが原因 で、LD 干渉波形がきれいな正弦波になっていないことが 挙げられる。また、段差計の精度、ウエットエッチング時 の表面粗さ等も誤差の一因になっていると考えられる。以 上の結果より、変調 ZnSe 系白色 LED 光源を用いた低コ ヒーレンス干渉計により1µmオーダーのSiO₂薄膜の膜 厚計測が可能であることを示し,また大掛かりな光源を用

いない簡易な構成の干渉計で高分解能を達成した。

4. ま と め

変調 ZnSe 系白色 LED を用いた低コヒーレンス干渉計 によって,安価で高分解能に膜厚を計測する手法を提案し た.本手法では、ZnSe系白色 LED の青色光と蛍光の発 光原理の違いに起因する変調応答速度に着目した。ZnSe 系白色 LED を約 50 kHz 以上のパルス変調で点灯させる と白色光(青色光+蛍光)と蛍光が交互に現れる色分離状 態にすることができることを見いだした。変調周波数500 kHz においてブロードな発光スペクトルを示す蛍光成分 のみを抽出することに成功し、その蛍光成分のみを用いた 干渉波形のコヒーレンス長は約1.32 µm となった.この 蛍光成分を用いた低コヒーレンス干渉計により、1µmオ ーダーのSiO₂薄膜の膜厚計測を行うことができた。今 後, S/N 比の改善などを行うことで, 簡易な構成の低コ ヒーレンス干渉計システムを用いた光学パラメーター計測 等や半導体基板の温度計測などの応用を,高精度,高分解 能に行うことが可能になる。

文 献

- M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama and M. Hashimoto: "Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low-coherence interferometry," Opt. Lett., 23 (1998) 966–968.
- 2) K. Takeda, Y. Tomekawa, T. Shiina, M. Ito, Y. Okamura and N. Ishii: "Temperature-measurement system using optical fiber-type low-coherence interferometry for multilayered substrate," Jpn. J. Appl. Phys., 43 (2004) 7737-7741.
- 3)太田貴之,伊藤昌文:"低コヒーレンス干渉計を用いたプラ ズマプロセス中の基板温度計測技術",計測と制御,47 (2008) 403-408.
- L. Yuan, L. Zhou and W. Jin: "Quasi-distributed strain sensing with white-light interferometry: A novel approach," Opt. Lett., 25 (2000) 1074-1076.
- 5) D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto: "Optical coherence tomography," Science, 254 (1991) 1178-1181.
- 6) B. E. Bouma and G. J. Tearney, ed.: *Handbook of Optical Coherence Tomography* (Marcel Dekker, New York, 2002).
- A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, Ni. R. Munce, M. K. K. Leung, J. Jiang, A. Cable,

B. C. Wilson, I. A. Vitkin and V. X. D. Yang: "Speckle variance detection of microvasculature using swept-source optical coherence tomography," Opt. Lett., **33** (2008) 1530-1532.

- 佐藤 学,若木一郎,漆山慶一,渡部裕輝,丹野直弘:
 "Optical Coherence Tomography 用合成光源の基礎研究", レーザー研究,31 (2003) 663-667.
- Y. Zhang, M. Sato and N. Tanno: "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes," Opt. Lett., 26 (2001) 205-207.
- L. Vabre, A. Dubois and A. C. Boccara: "Thermal-light full-field optical coherence tomography," Opt. Lett., 27 (2002) 530-532.
- M. Ohmi and M. Haruna: "Ultra-high resolution optical coherence tomography (OCT) using a halogen lamp as the light source," Opt. Rev., 10 (2003) 478-481.
- 12) B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein and E. Scherzer: "Submicrometer axial resolution optical coherence tomography," Opt. Lett., 27 (2002) 1800–1802.
- 13) H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen and F. W. Wise: "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 mm," Opt. Lett., **30** (2005) 1171-1173.
- 14) M. A. Choma, M. V. Sarunic, C. Yang and J. A. Izatt: "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express, **11** (2003) 2183–2189.
- 15) Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh and T. Yatagai: "Three-dimensional and high-speed swept-source optical coherence tomography for *in vivo* investigation of human anterior eye segment," Opt. Express, **13** (2005) 10652–10664.
- 16) R. Huber, M. Wojtkowski and J. G. Fujimoto: "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express, 14 (2006) 3225–3237.
- 17) K. Katayama, H. Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, T. Mitsui, T. Matsuoka, M. Irikura, T. Takebe, S. Nishine and T. Shirakawa: "ZnSe-based white LEDs," J. Crystal Growth, 214/215 (2000) 1064–1070.
- 18) 中村孝夫,武部敏彦: "ZnSe 系白色 LED とその応用",オプトロニクス,228 (2000) 126-131.
- 19) 石田通彰: "InGaN 系 LED とその応用",オプトロニクス, 228 (2000) 120-125.
- 20) T. Shiina, N. Izuhara, M. Ito and Y. Okamura: "Modulated white-LED interferometer," Proc. SPIE, **4920** (2002) 174– 181.
- 21) Y. Okamura, T. Shiina and M. Ito: "Characteristics of modulated white-LED and application to electrically controlled spectroscopy," Proc. SPIE, **4922** (2002) 43-50.