ラジアル偏光ビームを用いた SHG 顕微計測

新岡 宏彦*・蘆田幸一郎**・吉木 啓介***・荒木 勉**・橋本 守**

SHG Microscopy Excitation with Radially Polarized Beam

Hirohiko NIIOKA*, Koichiro Ashida**, Keisuke Yoshiki***, Tsutomu Araki** and Mamoru Hashimoto**

Reflection absorption spectroscopy has been utilized to effectively observe organic films/molecules on metal substrate though the spatial resolution is restricted because high incident angle is required. For sensitive measurement of the film/molecules with microscopic resolution, we applied a radially polarized beam. With the combination of SHG microscopy due to its inherent surface sensitivity, enhanced SHG imaging of self-assembled monolayer (SAM) on Pt substrate was realized. Radially polarized beam enhanced the signal from SAM approximately 4 times comparing linearly polarized beam. This enhancement technique might be applied to various metal substrates.

Key words: second harmonic generation (SHG), imaging, radially polarized beam, self-assembled monolayer (SAM)

近年,有機物半導体・伝導体の発展と有機薄膜の成膜技術の発展に伴い,有機薄膜を用いたデバイスの開発が盛ん に行われている.このようなデバイスの評価・解析では, わずかな分子層や微細なパターンが対象となるため,より 高感度かつ高分解能の計測方法が望まれている.

金属上の有機薄膜計測にはさまざまな手法があるが,高 感度反射分光法は簡便な手法として広く用いられてい る^{1,2)}.高感度反射分光法では,P偏光の光を金属表面に高 角度で入射させ,入射光と反射光の干渉による増強効果を 利用して,高感度に金属基板上薄膜を計測する.しかしな がら,光を集光せず入射させる手法であるため,空間分解 能は制限されており,波長程度あるいは波長以下の空間分 解能で観測を行うことは望めなかった.

われわれはラジアル偏光を高感度反射法へ応用し、金属 基板上有機単分子膜の高感度・高空間分解能計測およびイ メージングを行った.また、このとき、非線形光学効果の ひとつである第二高調波発生(SHG: second harmonic generation)を組み合わせ、顕微鏡の高分解能化を行った.

1. ラジアル偏光ビーム照射による電場増強

ラジアル偏光ビームとは、図1(a)に示されるような、 光軸に対して放射状に広がった偏光分布をもつビームのこ とである. ラジアル偏光ビームを基板上に集光すると、す べての光をP偏光として照射することができ、焦点におい て電場が増強され、金属基板表面上の分子を高感度に観察 することが可能となる.また、高角度で入射される成分ほ ど効率よく電場増強を誘起できるので、NA の高いレンズ での集光や、輪帯瞳を用いた高角度成分のみの照射を行う ことによって、より高効率に電場増強効果を得ることが可 能となる. これに対し, 直線偏光ビームを金属基板上に集 光すると、すべてがP偏光成分とはならずに、一部S偏光 成分を含んでしまう(図1(b)Y'軸上の偏光成分).S偏 光の光は金属基板内部の自由電子によってその電場が相殺 されてしまうため、基板上に光電場を形成することができ ず,金属基板上の分子を効率よく励起することができな 61.

^{*}大阪大学ナノサイエンスデザイン教育研究センター(〒560-8531 豊中市待兼山 1-3) E-mail: niioka@insd.osaka-u.ac.jp

^{**}大阪大学基礎工学研究科 (〒560-8531 豊中市待兼山 1-3)

^{***}兵庫県立大学工学研究科 (〒671-2201 姫路市書写 2167)

図1 ラジアル偏光ビーム(a)と直線偏光ビーム(b)の集光の様子.

図 2 (a) 偏光モードコンバーターの光学配置, (b) 八分割液晶素子.

液晶モードコンバーターによるラジアル偏光ビームの 生成

われわれはこれまでに、機械的な駆動機構がなく、電気 的な液晶制御によってさまざまな偏光パターンの形成が可 能な八分割液晶モードコンバーターを作製し、顕微鏡観察 への応用を行ってきた³⁻⁵⁾.液晶モードコンバーターの光 学配置は、図2のように2つの液晶素子と四分の一波長板 が並んだ配置となる.液晶素子のa,b方向はそれぞれ異常 光、常光の偏光方向を示しており、a方向は電圧制御に よって位相遅延量の制御が可能である.

ラジアル偏光が生成される過程について、八分割液晶素 子の1つの素子にX方向の直線偏光ビームが入射した場合 を考える(図2(a)).液晶セル1によって位相遅延を受け るが、透過後の光はX方向の直線偏光であり、今は液晶セ ル1については考えないでおく、次に、光が液晶セル2を 透過すると、液晶セル2は液晶セル1に対して45度回転し

図 3 Pt 基板上 DACITC 単分子膜からの SHG 強度と Pt 基板上 SAM 分子の SHG 像.

た配置をとっており, a 方向の位相遅延量に応じた楕円偏 光が生成される.その後,四分の一波長板を透過すると, 楕円偏光は直線偏光ビームに変換される.このとき,直線 偏光ビームの回転角度 φ は液晶セル2に印可する電圧で制 御可能であるため,液晶セル2と四分の一波長板により, 任意の角度をもった直線偏光を生成することができる. よって,図2(b)のような八分割の素子を用い,直線偏光 ビームをそれぞれの素子によって適当な角度に回転させ, 放射状のパターンをもった偏光を生成できる.さらに,液 晶セル1で位相遅延を与え,各素子を透過した光の位相を 揃えることによって, ラジアル偏光ビームを得ることが可 能となる.

3. Pt 基板上単分子膜の SHG 計測・イメージング

SHG 光の発生効率は光強度の二乗に比例するため, 焦 点スポット中心付近の光強度の強い部分でしか誘起され ず, SHG 光を検出することによって回折限界を超えた高 分解能のイメージングが可能である. さらに, SHG は二 次の非線形光学効果であり, 偶数次の非線形光学効果は反 転対称性のある物質からは発生しないという特徴がある. そのため, 反転対称性が崩れる表面・界面近傍からの情報 を選択的に取得できる. 電極等に利用される金属有機薄膜 デバイスにおいて, 界面近傍の分子情報はキャリヤーの移 動等のデバイス性能にかかわる重要な要素である. われわ れは, ラジアル偏光ビーム照射と SHG 計測を組み合わ せ, 高感度・高分解能に金属基板上単分子膜の計測および イメージングを行った.

計測試料として、Pt 基板上に作製した単分子膜を用いた.

402 (32)

図4 焦点面における光強度の二乗分布とそのラインプロファイル.

単分子膜はDACITC (7-dimethylamino-4-methylcoumarin-3isothiocyanate)を用いて作製した⁴⁾. 光源には波長 800 nm のフェムト秒パルスレーザーを用い,効率よく電場増強を 誘起するために,輪帯照明により高角度成分のみを抽出し た.図3にラジアル偏光ビーム,X偏光,Y偏光を照射し た際の,DACITC/PtおよびPt基板のみから発生するSHG 強度を示す.また,コントロールとして,Pt基板のみか ら発生するSHG 強度も同時に示す(計測値の10倍の値を 表示).結果から,ラジアル偏光ビームを用いて,DACITC からのSHG 強度を4倍程度増強させることに成功した. なお,Pt基板から発生するSHG光は,無視できるほど小 さいことがわかる.

さらに、DACITC 単分子膜を UV 露光によってパターニ ングし^{4,6},各偏光ビームを用いて SHG イメージングを 行った.図3に示すように、ラジアル偏光ビームを用いた 際にグリッド状にパターニングされた DACITC 単分子膜 のイメージを鮮明に観察できた.このように、本手法を用 いることによって、SAM のような1分子の厚さしかない 微量な有機分子薄膜の顕微観察も可能であることが示さ れた.

4. 焦点スポットにおける SHG 発生効率の計算

数値計算を用いて、ラジアル偏光ビームおよび直線偏光 ビームを金属基板上へ集光した際の、集光スポットにおけ る SHG 発生効率の比較を行った.まず、ベクトル回折理 論に基づいて焦点スポットにおける光強度分布を計算 し⁷⁾、次に、SHG 光の発生効率は光強度の二乗に比例する ため、光強度の二乗を計算した(図 4).波長は 800 nm、 金属は Pt (n_1 =1.516, n_2 =1.76-i4.25), NA は 1.365~1.45 とした. ラジアル偏光ビームを用いた場合、強度分布の二乗の積 分値は直線偏光ビームを用いた場合に比べて 4.03 倍とな り、計算結果は実験結果とよい一致を示した.また、直線 偏光ビームを用いた際に、光強度の二乗分布は集光スポッ トにおいて空間的に広がった 2 つのピークがあるのに対 し、ラジアル偏光ビームの場合は先鋭なピークが1つだけ であることから、ラジアル偏光ビームを用いることによっ て高分解能の計測が期待できる.これらの結果より、ラジ アル偏光ビームを用いることによって、直線偏光ビームを 用いた場合よりも高感度、高分解能に金属基板上有機分子 の計測が可能であると示唆される.

ラジアル偏光ビームと SHG 顕微鏡を組み合わせて,直線偏光ビームを用いた場合よりも,金属基板上単分子膜を 高感度・高分解能にイメージングした。本手法は金属基板 表面の増強電場を利用した計測手法であるため,その他の 非線形光学効果のラマン効果と組み合わせ,効率よく信号 を取得する等の応用が考えられる。また,金属基板上の分 子を効率よく計測するためにプラズモンを用いた手法があ るが,Ptのようにプラズモン共鳴波長が紫外領域にある 金属に対しては応用が難しい。それに対して,本手法はさ まざまな金属に対して応用可能であると考える。

文 献

- R. G. Greenler: "Infrared study of adsorbed molecules on metal surface by reflection techniques," J. Chem. Phys., 44 (1966) 310–315.
- F. M. Hoffman: "Infrared reflection-absorption spectroscopy of adsorbed molecules," Surf. Sci. Rep., 3 (1983) 107–192.
- 3) 吉木啓介,阿井川智正,橋本 守,栗原 誠,橋本信幸,荒 木 勉:"小型偏光モード変換器を用いた細胞内小器官の高 分解能観察",生体医光学,46 (2009) 698-702.
- 4) M. Hashimoto, K. Ashida, K. Yoshiki and T. Araki: "Enhancement of second harmonic generation from selfassembled monolayers on gold by excitation with radially polarized beam," Opt. Lett., 34 (2009) 1423–1425.
- K. Yoshiki, K. Ryosuke, M. Hashimoto, N. Hashimoto and T. Araki: "Second-harmonic-generation microscope using eightsegment polarization-mode converter to observe threedimensional molecular orientation," Opt. Lett., **32** (2007) 1680– 1682.
- H. Choi, Y. Kang, H. Lee and C. Lee: "Photopatterning of gold and copper surfaces by using self-assembled monolayers," Curr. Appl. Phys., 7 (2007) 522–527.
- K. S. Youngworth and T. G. Brown: "Focusing of high numerical aperture cylindrical vector beams," Opt. Express, 7 (2000) 77–87.

(2010年4月15日受理)