量子カスケードレーザー開発と計測への応用

山西 正道*・枝村 忠孝*・秋草 直大**

Development of Quantum Cascade Lasers and Their Applications

Masamichi YAMANISHI*, Tadataka EDAMURA* and Naota AKIKUSA**

Quantum cascade lasers, QCLs are semiconductor lasers that emit in the mid-infrared region. Unlike typical interband semiconductor laser diodes the QCLs emit radiation through intersubband transitions. Since the QCL is the only mid-infrared semiconductor lasers achieving room temperature operation, various applications have been demonstrated in the precise and high sensitivity gas sensing applications.

Key words: quantum cascade laser, mid-infrared, gas sensing

半導体量子井戸中に形成されるサブバンド間の光学遷移 を利用した量子カスケードレーザー(quantum cascade laser; QCL)は、1994年にJ. Faist と F. Capasso らによって 初めて報告された¹⁾.彼らは共鳴トンネル効果を用いて効 率的に上位準位に電子を注入し、かつ極性縦光学(longitudinal optics; LO)フォノン散乱を利用して超高速に下位 準位から電子を引き抜くことにより実効的な反転分布を実 現し、レーザー発振に成功した。その後、量子カスケード レーザーに関する研究は欧米を中心に盛んに行われ、波長 100 μ m 以上のいわゆるテラヘルツ領域においても発振が 達成された²⁾.現在では波長 3~20 μ m の中赤外領域で室 温動作可能な唯一の実用的半導体レーザーであり、環境 計測をはじめとしてさまざまな分野への応用が期待されて いる.

1. 動作原理と特徴

図1に、典型的な3つのサブバンドからなる三準位系の 量子カスケードレーザーの、活性領域の伝導帯におけるエ ネルギーバンド図を示す.活性領域は電子注入層と発光層 を1ユニットとし、それを多段(通常、30~50段)にカス ケード結合した構造となっている.電子注入層は量子井戸 の厚さが(図の左から右に向かうにつれて)除々に薄く なっていくチャープ超格子構造となっており、動作状態で は素子に印加される電圧によって超格子内のミニバンドが 平坦になるように設計されている.このミニバンドから, 共鳴トンネルによって発光層に形成された第3準位(E3) へ電子が注入される.バンド間遷移による通常の半導体 レーザーの場合と異なり,サブバンド間遷移には不可避な 形で高速(緩和時間ピコ秒オーダー)のLOフォノン放射 による非発光緩和が存在する.この状況のもとで分布反転 を維持するためには,第2準位(E2)から,さらに高速に 電子を引き抜く必要があり,第2準位(E2)と第1準位 (E1)とのエネルギー差は,通常LOフォノンのエネル ギー程度となるように設計し,共鳴的なLOフォノン緩和 を利用する.

サブバンド間遷移を利用することで、量子カスケード レーザーは、次のような特徴をもっている。

- (1)発振波長は材料のバンドギャップによるものではな く、同一材料系で中赤外からテラヘルツ領域まで設計 可能である。
- (2) 中赤外域で動作するデバイスを, GaAsやInGaAsといったこれまでの半導体レーザーで使用実績のあるⅢ-V化合物半導体材料で実現でき,既存の結晶成長,プロセスおよび組み立て技術をそのまま利用できる.
- (3) 電子注入層と発光層の段数を大きく(30 段以上)す

^{*}浜松ホトニクス(株)中央研究所 (〒434-8601 浜松市浜北区平口 5000)

^{**}浜松ホトニクス(株)開発本部(〒434-8601 浜松市浜北区平口 5000) E-mal: aki@crl.hpk.co.jp

図1 三準位系の量子カスケードレーザーの活性領域の伝 導体におけるエネルギーバンドの概略図.

図2 規格化注入電流に対するレーザー上位準 位からの緩和レート,誘導放出レート,および 自然放出レートの計算結果の一例.

ることにより、レーザー発振時には注入電子1個当た り複数の光子発生が可能となり、結果として高い量子 効率が得られる.

(4) 以下に示すように,高速の非発光緩和に起因して, 外部共振器を用いることなく本質的に狭いスペクトル 線幅(1 kHz 程度)が得られる。

これまでのところ,テラヘルツ領域では高温における利得 係数の低下のため,その動作温度は180 K 程度にとどまっ ている.一方,短波長側では,使用する材料系の伝導帯の バンドオフセットで発振波長が3 µm 以上に制限されて いる.

図2に、規格化した注入電流(I_0/I_{th})に対する(誘導放 出を除く)上位準位からの緩和レート(図では non-lasing rate と表示),誘導放出,自然放出の各レートの計算結果 の一例を示す. 図中の β_{eff} は実効的な自然放出結合係数 で、次のように定義されている³⁾.

$\beta_{\rm eff} = (\tau_{\rm t}/\tau_{\rm r})\beta$

上式で, τ_t は (誘導放出を除く) 上位準位からの緩和時 間, τ_r は自然放出寿命, β は自然放出結合係数 (中赤外の 場合, $10^{-3} \sim 10^{-4}$) である. $\tau_r \sim 10$ ns に対して $\tau_t \sim ps$ で あるため, 実効自然放出結合係数はきわめて小さな値とな る, すなわち, $\beta_{eff} = 10^{-7} \sim 10^{-8}$. この小さな実効自然放 出結合係数は量子カスケードレーザーの特徴的な発振特性 を明確に描き出している. 例えば図に示されるように, 誘 導放出レートが発振閾値付近で飛躍的に増大し, いったん レーザー発振が起こってしまえば, 高速の非発光過程の存 在にもかかわらず高い発光効率を確保しうることがわか る. また, レーザー発振モードに結合する自然放出レート は, 誘導放出レートに比べて極度に小さい値にとどまるた め, レーザー発振出力のスペクトル線幅は極度に狭くな る. (真性) スペクトル線幅は, Schawlow-Townesの式を 書き直す形で, β_{eff} を用いて定式化されている³.

$\delta f = (1/4\pi)(1+\alpha^2)[\beta_{\rm eff}g/(I_0/I_{\rm th}-1)]$

ここで、 γ は光子の減衰レートで、 $10^{11}\sim10^{12}$ 1/s 程度の値 をとる.また、 α は線幅増大係数とよばれる量で、量子カ スケードレーザーでは、サブバンドの曲率がバンドに依存 しないため、ほぼゼロとみなしうる.同時に、 β_{eff} が非常 に小さいため、結果として線幅がきわめて小さくなる ($\delta f \sim 1 \text{ kHz}$).実際、 $4 \mu \text{m}$ 帯の量子カスケードレーザー で ~500 Hz という狭い線幅が観測されている⁴⁾.いずれに しても、通常の半導体レーザーの線幅に比べて3桁も狭い 線幅が高速の非発光過程の存在のお陰で得られることは、 驚くべきことであると同時に、本質的なスペクトル線幅の 狭さは、量子カスケードレーザーの分光分析用光源として の有用性を示している.

2. 活性領域の構造および素子特性

2.1 室温 CW 駆動量子カスケードレーザー

半導体レーザーを光源に用いたシステムでは、変調が容 易で大きな平均出力が得られる CW 駆動は実用上非常に重 要である.量子カスケードレーザーは一般に動作電圧が高 く,活性領域での発熱が大きい.したがって、室温近傍で の CW 駆動では、低閾値化が可能な活性領域の設計、お よび熱伝導効率に優れた素子構造が重要となる.図3に 活性領域のバンド図を示す.InP 基板上に格子整合する InGaAs/InAlAs 量子井戸構造より構成されており、活性領 域は通常 30~40 段程度のカスケード結合となっている. 図中の level-3 がレーザー動作に寄与する上位準位、level-2 が下位準位に対応する.結晶成長は量産性を考慮して有機 金属気相成長法 (MOCVD) で行っている.活性領域は フォノン共鳴-ミニバンド緩和 (single-phonon resonance continuum depopulation; SPC 緩和)構造⁵⁾とした.従来構 造で問題となっていた下位準位の電子の流れを改善し、効

図3 シミュレーションにより計算されたフォノン共鳴-ミニバンド緩和 (SPC 緩和)構造の量子 カスケードレーザーのバンド構造.

図4 SPC 緩和構造を用いた CW 駆動型量子カス ケードレーザーの電流-電圧特性,および電流-光 出力特性.

率的な反転分布形成のために LO フォノン散乱を介してミ ニバンドへ電子を落とし、ミニバンド内の高速緩和を利用 した構造となっている.非常に短い下位準位寿命 (<0.2 ps)を実現し、かつ下位準位からの緩和構造をミニバンド とすることで設計および結晶成長が容易となり、許容範囲 が広く安定した特性が得られるという特徴がある.素子は リッジストライプ構造を Fe ドープ半絶縁性 InP を用いた 埋め込みへテロ (buried hetero; BH)構造とし、Cu ヒート シンクに epi-side down でマウントしている.図4に SPC 緩 和構造の CW 駆動における電流-電圧特性および電流-光出 力特性を示す.30℃ における発振波長は 7.9 μ m,発振闘 値電流密度 2.2 kA/cm²,平均光出力 36 mW,最高動作温 度 65℃が得られており、SPC 緩和構造において良好な CW 駆動を実現している.

2.2 縦シングルモード化:分布帰還型量子カスケード レーザー

通常のファブリー・ペロー型素子では、発振スペクトル

図5 CO₂分析用に開発した発振波長 4.3 μm の CW 駆動 DFB 型量子カスケードレーザーの発振波長 と,素子温度および駆動電流の依存性.

は共振器軸モードに起因したマルチモードスペクトルと なっている。一般に、高精度な分光分析用光源としては、 縦シングルモードでの発振が求められる。シングルモード 化には、通信波長帯などの LD と同様に、回折格子を素子 中に組み込んだ分布帰還型構造 (distributed feed back: DFB)⁶⁾が用いられる。発振波長が通信波長帯に比べて長 波長であり,比較的容易に一次の回折を利用でき,サイド モード抑圧比は 30 dB 以上が得られている.シングルモー ド DFB 型量子カスケードレーザーの波長可変性は実効屈 折率の微小な温度分散により実現され、素子温度が高くな るにつれて発振波長はシングルモードを維持したまま長波 長側にシフトする。素子温度を連続的に変化させること で、連続的な波長挿引が可能である。図5に、CO2分析用 に開発した波長 4.3 µm 帯の CW 駆動 DFB 型量子カスケー ドレーザーの発振波長と、素子温度および駆動電流の依存 性を示す。レーザーチップがマウントされているヒートシ ンクの温度を TEC により制御することで、発振波長を チューニングすることが可能となっている.また,発振波 長は駆動電流にも依存性がある。これは駆動電流により発 生する素子の自己発熱(ジュール熱)に起因している。 TEC で制御しているヒートシンク温度は一定であって も、駆動電流を変化させることでレーザーチップの温度は 局所的に変化する. この駆動電流による波長可変性を利用 して,駆動電流に鋸歯状波バイアスを重畳するなどして周 期的かつ連続的な波長挿引が可能である。

2.3 長波長帯(12 µm 以上)量子カスケードレーザー

波長 12 μm 以上の長波長帯では、上位準位と下位準位 のエネルギー間隔が100 meV以下となり、上位準位寿命が 急激に短くなるために、レーザー発振に必要な反転分布の 形成が困難となる.また、自由キャリヤー吸収による内部 損失も大きく、本質的に閾値電流密度が高く、室温付近で

図6 シミュレーションにより計算された間接注入励起 (IDP) 構造のバンド構造.

の駆動は容易ではない、そこで、上位準位にキャリヤーを 効率的に注入する新たな構造を提案し、実証した.従来構 造では、電子注入層のキャリヤーは共鳴トンネル効果によ り発光層の上位準位に直接的に注入されていた。このよう に電子注入層の基底準位と発光層の上位準位が直接結合し た状態では、常に上位準位から電子注入層への逆向きの キャリヤーの流れが存在する. そのため, 発光層に最大注 入できるキャリヤー数は電子注入層に配置されたキャリ ヤーの2分の1となり、これがレーザー動作時の最大電流 を制限する要因となっている. そこで間接注入励起(indirect pump scheme; IDP) 構造⁷⁾を提案した。バンド構造 を図6に示す。電子注入層の基底準位1'からキャリヤーは 共鳴トンネル効果により発光層の上位準位よりも LO フォ ノンのエネルギー(約34meV)だけ高エネルギー側に設け られた励起準位4に注入され、そこからLOフォノン散乱 を介して高速に上位準位3に注入される. このような構造 では励起準位4のキャリヤーは常に電子注入層に戻るより も速く上位準位3に緩和するため、理想的には電子注入層 に配置されたキャリヤーの大部分を発光層に注入可能であ る。また、電子注入層のキャリヤーのクエンチング効果に より, 自由キャリヤー吸収による内部損失を大幅に低減す ることができる。上位準位寿命を延ばし効率的な反転分布 を形成する工夫としては、上位準位3と下位準位2を空間 的に分離し,発光遷移を対角遷移となるようにした.長波 長領域では、遷移の双極子モーメントを犠牲にしても上位 準位寿命を延ばすほうがレーザー素子特性の向上には有効 である.図7に発振波長15 µm 帯のパルス駆動(100 ns /100 kHz) における素子特性を示す。300K における閾値 電流密度 3.5 kA/cm²,最高動作温度 390K,閾値電流の温

図 7 IDP 構造を用いた波長 15 μm 帯のパルス駆動量子カスケードレーザーの電流-電圧特性,および電流-ピーク光出力特性.

度依存性を示す特性温度 T₀は 450K を記録した. きわめて 温度安定性の高い特性は,電子注入層のキャリヤーのクエ ンチング効果による内部損失の低減に起因していると考え られる.

3. 量子カスケードレーザーの計測応用

3.1 量子カスケードレーザーと分光応用

量子カスケードレーザーの主たる応用分野は,超精密な ガス計測や分子分光計測である.温室効果ガスとして知ら れる二酸化炭素(CO₂)やメタン(CH₄),亜酸化窒素 (N₂O)などの基本振動に由来した強い吸収線が中赤外領 域に存在するため,その吸収を計測することでppbレベル の極微量濃度のガス計測が可能である⁸⁾.すでに温室効果 ガスや自動車排ガスのリアルタイム計測などへの応用が始 まっている^{9,10)}.量子カスケードレーザーを光源とする最 大の優位点は,きわめてすぐれた波長分解能により,孤立 した1本の吸収線からの吸収強度を計測できることであ る.実ガスの計測においては,水分などの干渉ガスが存在 する雰囲気中であっても,対象とするガスからの吸収線を 選択的にとらえることができる.そのため,サンプルガス の脱湿や吸着などの前処理が不要となり, in-situで in-line なガス計測が実現できる.

中赤外領域の半導体レーザーを用いた吸収分光の歴史は 古く,液体窒素冷却の鉛化合物半導体レーザーを用いた研 究は1960年代に開始されている¹¹⁾.半導体レーザーを光 源とした精密な分光手法として期待されていたが,液体窒 素冷却が障害となり,商用化で先行した近赤外半導体レー ザーを光源とした分光手法に遅れをとっていた.現在はペ ルチェ冷却で動作可能な量子カスケードレーザーが出現し たことで状況が一変し,デバイス研究のみならず,さまざ まな計測手法などが提案されるに至っている.メタンおよ

図8 波長 7.87 µm の CW 駆動 DFB 型量子カ スケードレーザーを用いて計測した大気中の 亜酸化窒素とメタンの吸収スペクトル.

び亜酸化窒素の測定例は、DFB 型量子カスケードレー ザーの実現直後に実証されている¹²⁾. 11 ns の短パルス駆 動を行うことで波長チャーピングによるレーザー線幅のブ ロードニングを抑え, 鋸状歯バイアスすることで波長掃引 を実現させた. その後, 量子カスケードレーザーを用いた 計測例は, F. Tittle らのグループにより精力的になされ, 数多くの実証例が報告されている¹³⁾. 量子カスケードレー ザーを光源としたガス分析装置は, すでに海外を中心に商 用化がなされており, ガス分析用途の量子カスケードレー ザーはデバイス研究の域を脱し実用化のレベルにある.

3.2 温室効果ガスの微量検出

図8に,発振波長7.87 µmのCW 駆動型 DFB 量子カス ケードレーザーを用いた、大気中の亜酸化窒素(N2O)と メタン (CH₄) の吸収分光実験結果を示す. 亜酸化窒素と メタンは温室効果ガスとして知られており、大気中の濃度 はそれぞれ約 320 ppb,約1.8 ppm であることが報告され ている14).実験は、レーザー駆動電流に鋸状波バイアスを 重畳することで 0.5 cm⁻¹ (3 nm)の周期的な波長掃引を行 い、ガスセル透過後の光出力を MCT 検出器で測定した。 測定サンプルである大気は、光路長100mの多重反射型セ ルに導入し、圧力を1Paまで減圧したものを使用した。 わずか3nmの波長掃引幅の中に、孤立した亜酸化窒素と メタンの近接した吸収線が独立に観察されており、1回の 波長掃引で2種類の大気成分が同時に検出できている。そ れぞれの吸収線のアサインは HITRAN データベースを参 照して行った. このように, 量子カスケードレーザー, 赤 外検出器,ガスセルといた単純な機器構成で,サブ ppm 程度のガス検出は容易に行うことができる。

3.3 チャープパルスを利用した高速波長掃引

量子カスケードレーザーを利用した吸収分光の大きな利

図 9 連続的な波長チャーピングを有するパルス駆動 DFB 型量子カスケードレーザーのファブリー・ペ ロー・エタロン透過後の光出力の時間波形.

点のひとつに、リアルタイム性があげられる。特にパルス 駆動の量子カスケードレーザーを用いる場合,1パルス内 で生じる波長チャーピングを積極的に利用した超高速な波 長掃引が可能であり、これを利用してきわめて高い時間分 解能で実時間計測が可能である。この手法の優位点は、対 象となるガスを透過させた後の光出力の時間波形をオシロ スコープ上で観測することで、吸収スペクトルが簡便に取 得できる点にある¹⁵⁾.この波長チャーピングは、1発の駆 動電流パルス内で誘起されるジュール熱によるレーザー素 子の温度変化によってもたらされている。両面光学研磨し たゲルマニウムをファブリー・ペロー・エタロンとして用 い, 波長 7.8 µm のパルス駆動型 DFB 量子カスケードレー ザーの1パルス内で生じている波長チャーピングの評価 を,エタロンフリンジの観察により行った。図9にエタロ ン透過後の光出力の時間波形を示す。駆動パルスの前縁か ら後縁に向かって連続的なエタロンフリンジが観察され、 1パルス内で時間経過とともに発振波長が連続的に掃引さ れていることが確認できる.図9において、エタロンフリ ンジの間隔は一定ではなく、波長チャーピングは時間に対 して線形でないことがわかる。エタロンの共振周波数間隔 (free spectral range; FSR=0.096 cm⁻¹) から、パルス印加 を開始した時刻をゼロとしたときの時刻と発振波長の関係 を図10に示す。パルス前縁における発振波長の絶対周波 数は、別途の FTIR を用いた評価により 1272 cm⁻¹ とし た。チャープレートは二次の累乗近似でよくフィッティン グできている.チャープレートの非線形性は、1発の駆動 パルス印加に伴うジュール熱の蓄積過程を反映しているも のと解釈できる.このように1パルス内での波長チャープ を利用すれば、1 μs の時間窓で 4 cm⁻¹ (20 nm) 程度の高 速波長掃引が可能である、パルス駆動カスケードレーザー の繰り返し周波数は数百 kHz から数 MHz まで可能である

DFB 型量子カスケードレーザーのチャープレート.

ため、S/N向上のための積算回数を考慮しても、きわめて 高い時間分解能でガスの実時間計測が可能である。

量子カスケードレーザーの動作原理から計測応用までを 概説した.生来的な特徴はサブバンド間遷移にあるもの の,p-n 接合型の半導体レーザーダイオードを凌駕し得る 点は,量子力学に基づいた「バンドエンジニアリング」に より,超格子半導体中のキャリヤーのトランスポートや遷 移確率,緩和寿命などの設計の自由度が与えられる点にあ る.発振スペクトル線幅や高速変調性,広帯域発振におい て,p-n 接合型の半導体レーザーダイオードを凌駕するこ とが予見され,実証されはじめている.フォトニック結晶 やプラズモニクスを利用した研究も行われており,今後ま すます研究の裾野は拡大するものと期待している.

文 献

- J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson and A. Y. Cho: "Quantum cascade laser," Science, 264 (1994) 553– 556.
- 2) B. S. Williams, S. Kumar, H. Callebant, Q. Hu and J. N. Reno: "Terahertz quantum-cascade laser at $\lambda \approx 100 \ \mu m$ using metal waveguide for mode confinement," Appl. Phys. Lett., **83** (2003) 2124–2126.
- 3) M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa and H. Kan:

"Theory of the intrinsic linewidth of quantum cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons," IEEE J. Quantum Electron., **44** (2008) 12–29.

- 4) S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani and P. De Natali: "Observing the intrinsic linewidth of quantum cascade laser: Beyond the Schawlow-Townes limit," Phys. Rev. Lett., **104** (2010) 083904.
- 5) K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi and H. Kan: "High-performance, homogenous broad-gain quantum cascade lasers based on dual-upper-state design," Appl. Phys. Lett., **91** (2007) 141121.
- 6) C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent and A. Y. Cho: "Single-mode tunable distributed feedback and multiple wavelength quantum cascade lasers," IEEE J. Quantum Electron., 38 (2002) 569–581.
- M. Yamanishi, K. Fujita, T. Edamura and H. Kan: "Indirect pump scheme for quantum cascade lasers: Dynamics of electron-transport and very high T0-values," Opt. Express, 16 (2010) 20748–20758.
- A. A. Kosterev and F. K. Tittle: "Cemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron., 38 (2002) 582–591.
- 9) J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn and R. M. Mcgovern: "Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air," Appl. Phys. B, 92 (2008) 387–392.
- H. Sumizawa, H. Yamada and K. Tonokura: "Real-time monitoring of nitric oxide in diesel exhaust gas by mid-infrared cavity ring-down spectroscopy," Appl. Phys. B., 100 (2010) 925–931.
- J. O. Dimmock, I. Melngailis and A. J. Strauss: "Band structure nad laser action in Pb_xSn_{1-x}Te," Phys. Rev. Lett., 16 (1996) 1193–1196.
- 12) K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco and A. Y. Cho: "Sensitive absorption spectroscopy with room-temperature distributed-feedback quantum-cascade laser," Opt. Lett., 23 (1998) 219–221.
- 13) F. K. Tittle, Y. Bakhirkin, A. A. Kosterev and G. Wysocki: "Recent advances in trace gas detection using quantum and interband cascade lasers," Rev. Laser Eng., 34 (2006) 275–282.
- World Meterological Organization: WMO Greenhouse Gas Bulletin, 5 (2009).
- 15) 枝村忠孝,秋草直大,杉山厚志,落合隆英,藤田和上,山西 正道,菅 博文: "DFB 量子カスケードレーザーとその分光応 用",レーザー研究,36 (2008) 75-79.

(2010年10月25日受理)