熱レンズ顕微鏡を用いた非蛍光性生体試料の 超高感度計測

比企伸一郎・清水 久史・馬渡 和真・北森 武彦

Ultra Sensitive Detection of Non-Fluorescent Bio-Molecules with Thermal Lens Microscope

Shinichiro HIKI, Hisashi SHIMIZU, Kazuma MAWATARI and Takehiko KITAMORI

The features of thermal lens microscope (TLM) based on the Lambert-Beer law are both nearly all molecules absorbing photon and high sensitivity same as fluorescent method. Ultraviolet TLM (UV-TLM) is needed in order to detect biomolecules without label. This had never been realized because of difficulty of the light source and so on. We realized UV-TLM with a quasi-CW method. It was confirmed that the sensitivity with biomolecules was 10-350 times higher than UV/VIS detector. A single molecule detection technique is highly required from the standpoint of micro/nano-sized measurement. A high back ground level effects troubles. The new differential interference contrast TLM (DIC-TLM) realizes background-free detection using interference. The background was correctly reduced to 0.01 of conventional TLM, which improved signal-to-noise ratio of single gold nanoparticles one order of magnitude. Combining UV excitation, the DIC-TLM will realize single molecule detection of non-labeled biomolecules. It will be a powerful detection tool.

Key words: ultrasensitive, non-fluorescent, excitation, ultraviolet, differential interference contrast

非蛍光性生体試料の高感度計測法は,古くから研究や産 業の現場からの需要が高い.今日における研究や産業の現 場で汎用的に用いられる測定方法は,汎用的ではあるが低 感度な紫外分光法と,非蛍光性分子に対しては蛍光標識化 が必要な蛍光法の二法が代表的である.このため,これら 二法に代わる汎用性と高感度性能を有する検出法に関する 研究開発が盛んに進められている.

近年比較的認知度が高い,非蛍光性生体分子の高感度 検出法として挙げられる方法を以下に3例挙げる.まず1 例目として,表面プラズモン共鳴(surface plasmon resonance; SPR)測定法を紹介する.詳細な原理は割愛する が,金などの薄膜を蒸着したガラスにレーザー光を入射さ せると,SPR が起こる.このときの入射角度(共鳴角) は,金薄膜表面の物質誘電率に依存するため,金薄膜表面 の分子の状態(おもにサイズや密度)により共鳴角が変化 し,この変化をモニタリングすることでリアルタイム定量 分析が可能となる.本法は感度が比較的高く,タンパク質 の相互作用の特異性,親和性およびカイティクスなどの測 定に向くが,測定用のAuなどの薄膜を蒸着した基板上に 吸着した物質が測定対象となり,さらにこれと入射光学系 とのマッチングが必要となるため,測定容器が限定される といった点がデメリットとなる.このため,総合システム に搭載する検出器としてその存在が広く認められている¹⁾.

2 例目として、水晶振動子マイクロバランス (quartz crystal microbalance; QCM) 法を挙げる.水晶振動子の電 極表面に測定物質が吸着したときに、その質量に応じて振 動周波数が変動し、この変動量を計測することで定量分析 が可能となる.一例目の SPR と応用に向けての特徴が類 似しており、測定分子種を選ばないという意味での汎用性 は高いが、薄膜センサーを有した測定容器が必要となり、 システム搭載用検出器としての特徴が挙げられる²⁾.

次に3例目として、表面増強ラマン散乱法 (surface

東京大学大学院工学系研究科応用化学専攻北森研究室(〒113-8656 東京都文京区本郷 7-3-1) E-mail: kitamori@icl.t.u-tokyo.ac.jp

enhanced Raman scattering; SERS)を紹介する.金・銀と いった金属表面に測定対象を吸着させることにより,吸着 していない場合と比較して,ラマン散乱強度が10²~10⁶倍 増強される効果がある.この現象をラマン散乱法に応用し たのが,表面増強ラマン散乱(SERS)である.SERSの現 象そのものは1970年代から研究報告され,近年では,銀 粒子に吸着した単一分子のラマン散乱強度が10¹⁴~10¹⁵倍 増強されることが見いだされている³⁾.本法の特徴は,基 本原理のラマン散乱法というスペクトル分析であるがゆえ にリアルタイム定量分析に向かないこと,SPRと同様に金 薄膜などを蒸着した基板が必要であることから測定容器が 限定されること,また光学系が非常に大型になることなど の点で,汎用検出法としては不向きである.

一方で、これまで北森らのグループはランベルト・ベー ル則を基本原理として、高感度検出法である熱レンズ顕微 鏡 (thermal lens microscope; TLM) を開発してきた⁴⁾. 測 定対象が原理的には光を吸収するほぼすべての分子種であ り、測定容器は光を透過さえすればよいことから、汎用性 が吸光法と同程度であり、かつ検出感度は蛍光法と同レベ ルの検出能力を有することが特徴である. TLM はすでに 実用化されており5)、小型検出デバイスとしてオンチップ 化した TLM デバイスを容易に分析システムに組み込むこ とが可能である。TLM を用いて非蛍光性生体試料を無標 識超高感度検出するためには、紫外励起(UV-TLM)が必 要であるが、光源等の困難が多いため、これまで実現され なかった。今回は、擬似 CW 法を新規の励起法として開発 することで非蛍光性生体試料を超高感度検出することがで きるUV-TLMの実現と、その応用方法について解説する。 次に、単一分子検出は、計測の微小化の観点から需要が高 い.しかし、高バックグラウンドの影響等の困難が多く、 TLM をもってしてもこれまでは実現されていなかった. そこで、この困難を解決するために、屈折率の低下によっ て生じた位相差を検出し、干渉によってバックグラウンド フリーな検出を実現する、微分干渉熱レンズ顕微鏡 (DIC-TLM)を着想し、開発した。この DIC-TLM の性能評価結 果およびこれらの今後の展開について解説する.

1. 熱レンズ顕微鏡

本章では TLM の測定原理について述べる.図1に,典型的な分子のエネルギー準位の構造を示す⁶⁾.電気エネル ギーには基底状態の一重項S₀,励起一重項S₁,励起三重項 T₁などが存在する.基底状態の分子は励起状態とのエネ ルギー差に見合う光子を吸収して励起状態に遷移する.こ こまでは蛍光を発生する過程と同様であるが,蛍光は最低

励起状態(この場合は S_1 の中で一番低い振動準位)に遷移 し、そこから光子を1つ放出して基底状態に遷移する.こ の過程を輻射過程という.光照射により、一度にたくさん の分子が励起されるが、励起状態の分子がすべて蛍光を放 出して緩和するのではない.蛍光を出さなかった残りの分 子は光を出さずに緩和する.この遷移を無輻射遷移とよ ぶ.無輻射遷移では、励起状態と基底状態間のエネルギー 差に相当するエネルギーは最終的には分子の並進運動の 運動エネルギーとなり、周辺の分子と衝突を繰り返し、集 団としては熱エネルギーとして系に放出される.励起状態 にある多数の分子のうち輻射過程で緩和する分子の割合、 すなわち量子効率 ηr ,無輻射過程の量子収率を ηn とす ると、

$$\eta r + \eta n = 1 \tag{1}$$

が成り立つ.つまり,励起状態にある分子は,輻射過程か 無輻射過程いずれかの過程を経て基底状態に緩和する.よ く知られているように,蛍光をよく表出する分子はまれ で,蛍光物質と特別な称号が与えられる.しかし,蛍光物 質でさえ輻射過程の量子収率は数割程度であり,0.9を超 えるような蛍光分子はフルオレセインなど数えるほどしか ない.したがって,無輻射過程は特別な緩和過程でなく, ほとんどすべての分子にみられる一般的な現象である.

次に、この無輻射過程を経た光熱変換由来の熱エネル ギーは、試料自身の中や試料に接している媒質に熱拡散す る.この拡散した熱により媒質は熱膨張し、形状だけでな く応力や圧力などの機械的な物理量、屈折率など光学的な 物理量を変化させ、温度場と同様にこれら物理量の空間分 布を形成する.光熱変換由来の熱エネルギーは、温度に換 算すると通常 μ K程度である.温度変化が微小な場合は、 温度変化 ΔT は屈折率変化 Δn と反比例関係にあるため、 屈折率 Δn は中心部で最も小さく、中心から離れるにつれ て大きくなるような屈折率分布を形成する.つまり、レー ザーの強度分布と媒体(液体中では溶媒)への熱拡散を反

映して、放出される熱は光軸から垂直方向に周辺部へいく ほど下がり、垂直な温度勾配を生じる.この温度勾配は光 学的には凹レンズとして作用するため、この凹レンズ様の 効果を熱レンズ効果(thermal lens effect)と称する.この 熱レンズ効果の度の強さを、励起光とは別の波長を有する プローブ光を用いてモニターすることにより、超高感度検 出法である熱レンズ分光法(thermal lens spectroscopy) が成り立つ.TLM とはこの熱レンズ分光法を顕微鏡下で 実現したシステムである.

TLM を構築するに際し,励起光とプローブ光の焦点差 も重要なポイントとなる.通常の対物レンズは色収差が完 全に補正されているため,波長の異なる励起光とプローブ 光の焦点はまったく同じ位置になる(図2(a)および (c)).つまり,励起光によって熱レンズが形成されてもプ ローブ光の軌跡は変化せず,プローブ光の光量変化は検出 されない.したがって,熱レンズ測定を行うためには,励 起光とプローブ光の焦点の位置に差 ΔZ をつける必要があ る(図2(b)および(d)).この焦点差 ΔZ の最適値は $\Delta Z = \sqrt{3} l_c$ 程度である.ここで, l_c はプローブ光の共焦点 長であり,プローブ光の波長を λ ,プローブ光のスポット 径を ω_0 として, $l_c = (\pi \omega_0^2)/4\lambda$ と書き表せる.スポット径 は,開口数 NA を用いて, $\omega_0 = 1.22\lambda/NA$ となる.

2. 紫外励起熱レンズ顕微鏡の開発

熱レンズ顕微鏡の測定原理は、原理的には励起光の波長 を選択することで吸光法と同じ汎用性をもち得ることか ら、紫外励起の TLM (UV-TLM) を実現すれば非蛍光性生 体試料の測定が可能となる.しかし、UV-TLMの実現のた めには解決しなければならない課題が多く、① 紫外域に 対応できる小型光源の有無,性能(出力安定性や光透過性 など),サイズおよびコスト,②高エネルギー光による 測定試料のフォトブリーチングによる測定信号の低減,お よび溶媒や光学系の吸収によるバックグラウンド信号の増 加に由来する信号 / 雑音 (S/N)比の低減,等が挙げられ る.われわれが実現した UV-TLM⁷⁾のブロックダイアグラ ムを図3(a)に,写真を図3(b)に示す.上記の①およ び②の対策として以下の方法を採用した.

① 励起光源に、可視域のTLMに採用するような連続発振(CW)レーザー光源ではなく、高繰り返しパルスレー ザーを採用し、擬似連続発振(QCW)法を開発すること で、高安定性・小型・低コストの励起光源を確保した. CW 法の場合は、連続発振されたレーザー光(図4(a) 上)にライトチョッパーを用いて、1 kHzの変調を施す (図4(a)中).変調周期毎に、励起がONになると熱レン ズ信号(S_{TL})が上昇し、OFFになると下降すること、を 繰り返す(図4(a)下).これに対しQCW法は、高繰り返 しパルス光を擬似的なCW光として用いる(図4(b)). S_{TL} の上昇時間および下降時間の関係は、熱時間定数 T_c を 用いて式(2)で表すことができる.

$$T_{\rm c} = w^2 / 4D \tag{2}$$

このとき、wは励起光の半径、Dは溶液系の熱拡散係数で ある。平衡に到達する時間は約 25 Tc として見積もること ができ、今回の系における熱時間定数は、励起光の焦点位 置での半径 w が 0.8 μ m および水の熱拡散係数 D が 1.4× 10⁻⁷ m²/s であることから、平衡に到達する時間は 25 μ s と見積もることができる。パルスの間隔が特性熱時間定数 よりも短い場合は、TL 信号は CW レーザー光により励起 した場合と同様の S_{TL} の立ち上がりを得ることができる。

図3 (a) UV-TLM のブロックダイアグラムと (b) システム外観.

② バックグラウンド信号対策としては,光学系にはす べて石英ガラスを採用し,紫外光の吸収を最小限に抑える ことで対応している.さらに,高エネルギー光による測定 試料のフォトブリーチング対策として,試料の流速を最適 化することで対応している.基本的には流速が遅いほど STL は高くなるが,ブリーチング率が高くなり,一定条件 下では,流速と信号強度がトレードオフ関係にあるためで ある.

構築した UV-TLM の評価結果を図5に示す。測定試料は アデニン ($\varepsilon_{266 \text{ nm}}$: 13,200 M⁻¹ cm⁻¹)を石 英製マイクロ チップ (流路幅 100 μ m, 深さ 45 μ m)に流速 6.6 mm/s で

流した.励起光強度は 4.3 mW である. $0\sim15\times10^{-8}$ M の 範囲で直線性をもった検量線が得られ.検量線から算出し た検出下限値 (S/N=2) は 1.39×10^{-8} M で,定量限界 (2σ) は 1.49×10^{-8} M であった.これらの値はそれぞれラ ンベルト・ベール則から 1.83×10^{-6} Abs. および $1.97\times$ 10^{-6} Abs. と算出された.同様の試験を比較対象の UV/VIS 検出器と比較のために評価すると、検出限界 (S/N=2)は 5.49×10^{-6} M $(3.62\times10^{-4}$ Abs.)で,定量限界 (2σ) は 6.80×10^{-6} M $(4.49\times10^{-4}$ Abs.)であった.UV-TLM は UV/VIS 検出器と比較して、 $350\sim400$ 倍高感度であること が確認された.

3. 紫外熱レンズ顕微鏡の高速液体クロマトグラフィー への応用

次に、UV-TLMの応用として高速液体クロマトグラフィー (HPLC)の検出器として適応した例を紹介する.HPLC は、いわずと知れたタンパク質などをはじめとする生体由 来試料の分離・定量の代表的な手法であり、近年では特 に、タンパク質などの生体由来の微少量試料を扱うのにミ クロカラムやキャピラリーカラムが用いられるようになっ てきた.しかし,これらのカラムの場合は原理的に光路を 長く取ることができないため,吸光法による検出は不利と なり,逆に UV-TLM には非常に大きなアドバンテージと なる.ただし,この HPLC への応用においては, S_{π} に及 ぼすグラジエント溶出の影響が問題となる.そこで,水と アセトニトリルの混合溶媒系について,信号増強因子 (E_{Re})を算出した⁸⁾.グラジエント溶出に水-アセトニト リル (5~35 v/v%)の直線勾配法 (0~5分:5 v/v%, 5~ 35分:5~35 v/v%)を用いた場合の体積分率の領域で は, E_{Re} も1.2~3.3と緩やかに変化しており,この領域の 連続的な測定では熱レンズ信号に大きな影響を及ぼさない と考えられた.

合成ペプチド H-Trp-Glu-Glu-OH と H-Trp-Asp-Asp-Asp-OH を試料として、グラジエント溶出 HPLC に検出器とし て UV-TLM を適用したときの測定結果を図6に示す.測定 条件は、移動相:水-アセトニトリル(5~35 v/v%),流 速:6.6 mm/min,試料注入量:1 μ L,試料濃度:5 μ g/ mL である.分離カラム:Inertsil® WP300C18(ジーエルサ イエンス社製)、インジェクター:G1377A、液送高圧ポン プ G1376A および G1379A(いずれも Agilent 社製)を用い た.保持時間約16分と19分にそれぞれ H-Trp-Glu-Glu-OH と H-Trp-Asp-Asp-OHのピークを検出し、それぞれ試 料濃度が1~5 μ g/mL の範囲で良好な直線関係を示した.

算出した定量限界 (2σ) は, H-Trp-Glu-Glu-OH で 1.29 $\mu g/$ mL および H-Trp-Asp-Asp-Asp-OH で 0.93 $\mu g/$ mL となっ た. 比較のための UV/VIS 検出器を用いた同様の測定結果 と比較すると,約 10 倍高感度であることがわかった. ア デニンを試料とした場合は UV-TLM の感度は UV/VIS 検出 器に比較して約 300 倍高感度であった. 今回, アデニンの 結果に比較して検出性能が悪くなった原因としては, アデ ニンの測定に比べて, バックグラウンド (溶媒の S_{TL})が 増加したこと、モル吸光係数が低下したこと、測定セル (ガラスキャピラリーチューブ)を含む測定系の頑健性お よび再現性の問題等があると考えられた. S_{π} は溶媒物性 によって信号強度が変化するため、時間とともに溶媒組成 が変化するグラジエント溶出は信号強度に影響を与え、検 出感度を低下させる要因になっていることが考えられた.

前章および本章で解説したように、UV-TLMは従来の単 相溶出法から濃度勾配溶出法の HPLC の検出器として非 常に有力なツールであり、UV/VIS 検出器に置きかわるべ き超高感度検出器として、さらなる市場への展開が期待で きる.

4. 微分干渉熱レンズ顕微鏡の開発

本章では、微分干渉法の導入による TLM の高感度化へ の取り組みについて述べる。近年,単一細胞分析⁹⁾やナ ノフルイディクス¹⁰⁾に代表されるように、分析場がさら に微小化している. このような分析では, 扱うことのでき るサンプル量が小さい (fL~aL レベル) ため、アナライト の絶対数が少なく、単一分子そのものを検出することが求 められる. 図7に濃度定量と単一分子検出の違いを示す. 従来のTLMは、7fL中の0.4分子に相当する濃度の定量に 成功していたが11),単一分子の検出には成功していな かった. これは、TLM の高い光学的バックグラウンドに 起因する問題である。原理の章で述べたように、TLM は 熱レンズ効果によるプローブ光の屈折を検出する。しか し、この強度変化(信号)はもとのプローブ光強度(光学 的バックグラウンド)に比べると非常に小さく,信号と 光学的バックグラウンドの強度比 (S/B 比) はたかだか 1/1000 レベルである。そのため、単一分子のような微小 信号を検出することは困難である。なお、ここで述べる

図8 (a) DIC-TLM の原理, (b) 焦点付近の拡大図.

バックグラウンドとはプローブ光に由来するものであり, 溶媒や夾雑物等によって発生するバックグラウンドとは異 なることに注意されたい.

そこで、バックグラウンドフリーを実現する新しい原理 が必要となる。従来のTLMは、光を入射して透過光の強 度変化を検出するため,顕微鏡の観察法でいえば明視野法 に相当する。一方、透明なサンプルを屈折率の差を利用し て観察する手法として、微分干渉法がある。この微分干渉 法を TLM に導入することで、バックグラウンドフリーを 実現する微分干渉熱レンズ顕微鏡 (DIC-TLM) を着想し た。**DIC-TLM** の原理を図 8 に示す。まず、直線偏光と なったプローブ光が、上部 DIC プリズムによって互いに 垂直な偏光面をもつ2本の直線偏光に等分される.等分さ れたプローブ光は平行を保ったまま試料面を通過し、下部 DIC プリズムによって進路が合成される。そして、偏光 フィルターを通過する際に干渉によって強度が最小とな り、バックグラウンドフリーが実現する。一方、励起光は 偏光面を 45° 傾けているため, 偏光分離が起こらない. す ると、2本のプローブ光の片側に熱レンズ効果が誘起さ れ、屈折率の低下に伴ってプローブ光間に位相差が発生す る。このプローブ光同士を干渉させることで偏光面の変化 分のみを取り出し、高感度検出する。これにより、バック グラウンドフリーで高感度な測定が実現する.

この原理を実現するためにきわめて重要なのが DIC プ リズムである.通常,光学顕微鏡に用いる DIC プリズム は,サンプルの形状を詳細に観察するために 0.5 µm 程度 の光線分離幅をもつように設計されている.しかし, TLM で高感度な測定を行うためには数 µm サイズの熱レ ンズ効果を発生させる必要があるため,光学顕微鏡用の DIC プリズムでは位相差を検出することができない.そこ で,分離幅を 5 µm に拡張した DIC プリズムを設計・製作 した.

この DIC プリズムを用いてバックグラウンドフリーの 効果を検証した.明視野 TLM と DIC-TLM について,色素 (サンセットイエロー)水溶液を用いて信号強度とバック グラウンドの強度をそれぞれ測定し,比較した.その結 果,バックグラウンドの強度は干渉によって2桁低下し, S/B比は1桁向上していることがわかった.これは,吸光 断面積の大きな色素分子と,温度による屈折率変化の大き な有機溶媒を用いれば,単一分子検出が可能なレベルであ る.明視野 TLM と DIC-TLM とでは信号検出の仕組みが異 なるため,信号成分も減少していることが示唆されたが, 十分なバックグラウンド低減効果があることが確かめら れた.

図9は明視野TLMとDIC-TLMの性能を比較したもので ある¹²⁾. 直径 5 nm の金ナノ粒子を水中に分散させたもの を 0.1 mm/s 程度の低流速で送液し, ロックインアンプの 時定数を 1 ms とすることで,検出部を通過した単一粒子 の熱レンズ信号を検出している.励起波長は 488 nm,プ ローブ波長は 633 nm である.測定は深さ 100 µm のマイク ロチャネル中で行ったため,粒子の通過位置や滞在時間に よって信号強度にばらつきが生じているが,信号とノイズ の S/N 比を比較すると 1 桁向上していた.これは,バック グラウンド,つまりプローブ光強度を 2 桁低減されたこと により,そのゆらぎの中に含まれる信号と同じ周波数の成 分が取り除かれ,ノイズが低減されたためである.以上の 結果より,バックグラウンドフリーな原理の導入によって 熱レンズ顕微鏡の性能が 1 桁向上したことがわかった.

加えて、DIC-TLM は拡張ナノ空間 (10~1000 nm サイ ズの空間) 内での濃度定量を可能にしている. この空間 は,従来マイクロフルイディクスで扱われていた空間と、 ナノテクノロジーで扱われていた空間との間に位置し、単 一分子とバルク相をつなぐきわめて重要な空間である. ま た,レーザーのスポット径および共焦点長よりも小さい空 間であることから、サンプルのロスなく検出が可能で、単 一細胞・単一分子分析に適した空間である. しかし、従来 の明視野 TLM では拡張ナノ空間内での高感度測定は実現

図9 (a) 明視野 TLM と (b) DIC-TLM による金ナノ粒子の単一粒子検出結果.

図10 ナノチャネル内の濃度定量結果.

していなかった. これには2つの原因が考えられる. 1つ 目は先に述べたバックグラウンドの問題である. 2つ目 は,光路長が共焦点長よりも短いためにナノチャネル内 に屈折率分布が形成されず,プローブ光が屈折しないと いうものである. そのため,屈折ではなく位相差を用いる DIC-TLM は有利である.

DIC-TLM によるナノチャネル内の濃度定量結果を図 10 に示す¹³⁾. サンプルはサンセットイエロー水溶液で,ナ ノチャネルは幅 20 μ m, 深さ 500 nm のものを使用した. μ M の領域で高い直線性が得られ,検出限界を算出したと ころ2.4 μ Mであった. この濃度を検出体積 (250 aL) 中の 分子数に直すと 390 分子となり,十分に高感度な測定が可 能であることがわかった. 一方,同じナノチャネルを用い て明視野 TLM で測定したところ,検出限界は 1 μ M 程度 であった. したがって,ナノチャネル中に限れば, DIC-TLM は明視野 TLM よりも 3 桁も高感度であることがわ かった. このことから,ナノチャネルにおいてはバックグ ラウンドフリーだけでなく,屈折と位相差という信号検出 の原理の違いが高感度化に貢献していることが示唆され た. このようにわずか数百 nm の光路長で吸光度測定を可 能にする検出法は, DIC-TLM 以外に存在しない. 今後は UV 励起や適切な分離法と組み合わせることにより, ナノ チャネルを用いた単一細胞・単一分子分析デバイスの開発 が期待される.

今回は、これまで測定できなかった非蛍光性生体試料を 超高感度計測する UV-TLM と、これまで困難であった微 少領域での単一分子検出を実現する DIC-TLM を中心に、 TLM を用いた非蛍光性生体試料の高感度観測について述 べた。今後は、UV 励起の DIC-TLM (UV-DIC-TLM)を実 現し、ナノ流路などの微小体積を測定するアプリケーショ ンに応用することで、プローブ光由来のバックグラウンド 信号のみでなく、UV 励起による容器や溶液・溶媒などに 由来するバックグラウンド信号の減少も期待でき、今回紹 介・解説した以上の検出性能が期待できる。非蛍光性生体 試料の超高感度観測は研究分野のみならず、産業分野など 幅広い分野から需要がある。これらの研究者や技術者らに とって非常に有益な計測ツールの実現が期待される。

文 献

- 1) http://www.biacore.com/lifesciences/index.html
- S. M. Nie and S. R. Emerry: "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science, 275 (1997) 1102–1106.
- 3) M. Kamihira, H. Nakazawa, A. Kira, Y. Mizutani, M. Nakamura and T. Nakayama: "Interaction of tea catechins with lipid bilayers investigated by a quartz-crystal microbalance analysis," Biosci. Biotechnol. Biochem., 72 (2008) 1372–1375.
- T. Kitamori, M. Tokeshi, A. Hibara and K. Sato: "Thermal lens microscopy and microchip chemistry," Anal. Chem., 76 (2004) 52A–60A.
- 5) http://www.i-mt.co.jp/
- 6) 北森武彦:"第2章 原理と装置",光熱変換分光法とその応用,澤田嗣郎編(学会出版センター,1997) pp. 5-31.
- 7) S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi and T. Kitamori: "UV-excitation thermal lens microscope for non-labeled and

ultrasensitive detection of non-fluorescent molecules," Anal. Chem., **78** (2006) 2859–2863.

- 8)比企伸一郎,渡慶次学,角田正也,馬渡和真,菊谷善国,佐藤記一,火原彰秀,志村清仁,内田直行,北森武彦: "紫外励起熱レンズ顕微鏡 / マイクロ液体クロマトグラフィーを用いたペプチドの無標識高感度検出",分析化学,56 (2007) 1-8.
- 9) D. Wang and S. Bodovitz: "Single cell analysis: The new frontier in 'omics'," Trends Biotechnol., **28** (2010) 281–290.
- M. Napoli, J. C. T. Eijkel and S. Pennathur: "Nanofluidic technology for biomolecule applications: A critical review," Lab Chip, 10 (2010) 957–985.
- 11) M. Tokeshi, M. Uchida, A. Hibara, T. Sawada and T. Kitamori: "Determination of subyoctomole amounts of nonfluorescent

molecules using a thermal lens microscope: Subsingle-molecule determination," Anal. Chem., **73** (2001) 2112–2116.

- 12) H. Shimizu, K. Mawatari and T. Kitamori: "Development of a differential interference contrast thermal lens microscope for sensitive individual nanoparticle detection in liquid," Anal. Chem., 81 (2009) 9802–9806.
- H. Shimizu, K. Mawatari and T. Kitamori: "Sensitive determination of concentration of nonfluorescent species in an extendednano channel by differential interference contrast thermal lens microscope," Anal. Chem., 82 (2010) 7479–7484.

(2011年1月6日受理)