フォトニック結晶ファイバーの研究開発

辻川 恭三・中島 和秀

Research and Development of Photonic Crystal Fibers

Kyozo TSUJIKAWA and Kazuhide NAKAJIMA

New types of optical fiber with a silica-air microstructure, such as photonic crystal fiber (PCF) and hole-assisted fiber (HAF), have received increasing attention because of their novel guiding properties such as wide single-mode bandwidth, dispersion tailoring, and low bending loss, etc. We mainly focus on recent progress in loss reduction in PCF. We also show that PCF and HAF have a possibility to become attractive transmission media for a large-capacity WDM transmission in terms of high power tolerance, especially as regards the fiber fuse effect.

Key words: photonic crystal fiber, hole-assisted fiber, loss reduction, fiber fuse effect

最近,断面内に周期的な空孔構造をもつフォトニック結 晶ファイバー (PCF: photonic crystal fiber)や空孔アシス トファイバー (HAF: hole-assisted fiber)といった,空孔 型光ファイバーの研究開発が急速に進展している.これら の光ファイバーでは,従来の単一モード光ファイバーでは 実現困難であった特性が実現できるため,次世代の光伝送 媒体として期待が寄せられている.本稿では,フォトニッ ク結晶ファイバー (PCF)を中心に,光伝送損失の低減技 術の動向,高速信号の伝送実験の結果,高パワー入力時の ファイバーヒューズに対する耐性評価の結果などについて 述べ,これらの空孔型光ファイバーの光伝送媒体としての 可能性について概説する.

1. 空孔型光ファイバーの特徴と低損失化の進展

空孔型光ファイバーは、その導波メカニズムによって分 類できる.本稿では、全反射を導波原理とするものの中 で、比較的少数の空孔を付与したクラッド部とドーパント 材料を添加したコア部との両方をもつタイプを空孔アシス トファイバー (HAF)、多数の空孔によってクラッド部の 屈折率を下げ、通常はコア部にドーパント材料を用いない タイプをフォトニック結晶ファイバー (PCF) とよぶ (表 1).われわれは、PCF では純石英ガラスを、HAF に関して は従来の1.3 µm帯ゼロ分散光ファイバー (SMF) と同様に コア部分に酸化ゲルマニウム (GeO₂) をドープした石英ガ ラスをファイバーの母材として用いている.

空孔型光ファイバー全般に適用される作製方法として は、おもに2つがある¹⁾.1つはキャピラリー法または stack and draw 法とよばれる.多数の石英ガラス細管(キャピラ リー)を最密構造に積み重ね、ジャケット用の太い径の石 英ガラス管の中に設置して母材を作製し、中心部分にコア となる石英ガラスロッドを挿入した後に線引きを行う.こ の方法は、空孔数の多い場合にも比較的容易に適用でき大 型の母材が作製可能であるが、空孔の配置については限定 される.もう1つは穴あけ法とよばれ、太い径の石英ガラ スロッドに穴をあけ、これを母材として線引きを行う.こ の方法では、空孔の配置は幅広く選択できるが、多数の穴 をあける場合には高度な母材加工技術が求められる.

HAF は、空孔による光閉じ込めの効果によって曲げ損 失を極限まで低減できるため²⁻⁴、「曲げフリー光ファイ バーコード」として⁵⁾、ユーザー宅内の配線用光コードへ の適用および導入が進められてきた。材料添加によるコア をもつ HAF では、空孔への光の浸み出しが小さいため低 損失化が比較的容易であり、すでに汎用の SMF とほぼ同 等の損失値(波長 1.55 μm で 0.2 dB/km 程度)に到達して

日本電信電話(株) NTT アクセスサービスシステム研究所(〒305-0805 つくば市花畑 1-7-1) E-mail: tujikawa@ansl.ntt.co.jp

表1 空孔型光ファイバーの分類.

図1 PCFの損失値の推移.

いる^{6,7)}.また,単一モード条件下で,小さい曲げ損失お よび汎用 SMF と同等のモードフィールド径を実現するた めの構造設計指針が確立されたため⁷⁾,今後,通信局内の 配線用光コード⁸⁾ やアクセス系のネットワークへの適用 領域の拡大が期待できる.

一方, PCF では空孔(屈折率 n=1)の大きさと配置に よって,クラッド部の実効的な屈折率を調整してコアとの 比屈折率差を得るため、コアの屈折率の調整にドーパント を必要としない.PCF で特徴的なのは、高速伝送に必要 な単一モード化を任意の波長域で実現できる点である⁹⁾. 波長分散,光非線形効果,複屈折率などについても、従来 の光ファイバーでは困難な特性が実現可能なため、われわ れは、非常に低い理論損失限界をもつ純石英ガラス製の PCF を次世代の超広帯域伝送媒体の有力な候補と考え、 長尺化と低損失化を目指して検討を進めてきた.図1に、 PCF の損失値の推移を示す¹⁰⁻¹⁸⁾.このように、1999 年当 初の 240 dB/km¹⁰⁾ から飛躍的に低損失化が進展し、長尺 化については 2006 年に最長 100 km の PCF が実現され た¹⁹⁾.この PCF は損失が 0.3 dB/km であり、外径 40 mm、 長さ 1200 mm の純石英ガラス母材から作製したものであ る. 2007 年には 0.18 dB/km (波長 1.55 μm)¹⁸⁾ と,汎用 SMF と同等以下の損失値が実現され、純石英コア SMF で の世界最低損失値 0.1484 dB/km²⁰⁾ も視野に入ってきてい る. 図 1 中の挿入図は、最低損失 0.18 dB/km の PCF の損 失波長特性である.

2. フォトニック結晶ファイバーの低損失化技術

本章では、図1に示した損失 0.18 dB/km の PCF を例と して、PCFの損失特性と低損失化に用いた手法について 述べる。適切な構造設計によって閉じ込め損失¹⁾を十分 に小さく抑えた PCF の損失は、波長 λ と係数 A. B を用い て,式(1)によってよく近似される21).ここで,第1項 はレイリー散乱損失(Aはレイリー散乱係数),第2項の 定数Bは構造不整散乱損失,第3項のα_{OH}はOH基不純物 による吸収損失,第4項の α_Rは石英ガラスの主フォノン による赤外吸収損失である。ただし、式(1)では波長の -4 乗に比例する損失成分すべてを便宜的にレイリー散乱 損失と表現している. つまり, 第1項には純石英コアのレ イリー散乱だけではなく、空孔表面の微細な凹凸による散 乱が含まれる。同様に、第2項の係数Bで表される構造不 整損失も、空孔表面の凹凸や空孔構造の長手方向の変動に 起因する散乱損失と考えられる。また、従来の PCF では、 第3項のOH 基吸収は波長 1.38 µm で約10 dB/km (波長 1.55 µm で約 0.1 dB/km に相当)と、汎用の SMF よりも明 らかに大きな値であった²²⁾

$$\alpha(\lambda) = A/\lambda^4 + B + \alpha_{\rm OH} + \alpha_{\rm IR} \qquad (1)$$

図2に PCF の損失の波長の-4乗プロットを示す. 図中 に,最低損失の PCF1 の特性と,下記のプロセスを適用 しなかった PCF2 の特性とを比較に示している. PCF1 で は,OH基吸収損失 α_{OH}を抑制するために,VAD 法で作製 された高純度な純石英ガラスを用い,脱水環境下で母材の

図2 作製した PCF の損失の波長依存性(波長の-4 乗プロット).

	PCF1	SMF
$A (dB/km/\mu m^4)$	0.72	1.0
α (dB/km at 1.55 μ m)	0.18	0.19
A/λ^4	0.13	0.17
α IR	0.01	0.01
lpha _{OH}	< 0.01	< 0.01
В	0.03	< 0.01

作製と組み立てを行った. さらに,乾燥した不活性ガス雰 囲気下で線引きすることで, α_{OH} のピーク値を 0.5 dB/km 程度に抑制できた.一方,母材の作製時に空孔内面の洗 浄,研磨,エッチングを行い,空孔表面の微細な凹凸の低 減を試みた.また線引き時には,空孔径とファイバー構造 の長手方向の均一性を保つために,温度や張力などの条件 を制御し,ファイバーの外径の変動量を 0.5 μ m 以下に抑 制した.これらのプロセスによって,PCF1の空孔表面の 微細な凹凸は低減された^{18,21)}.図2の直線領域の傾きは式 (1)の*A*を,切片は*B*を表すが,上記のプロセスを適用

した PCF1 では、PCF2 に比べて A. B ともに明らかに減少 しており、作製プロセスの改良による空孔由来の余剰散乱 損失の低減効果が明確に示された。PCF1の損失要因の分 析結果を汎用の SMF と比較して表2 に示す。特に、レイ リー散乱係数(係数A)の値は 0.72 dB/km/µm⁴と、世界 最低損失の純石英コアSMFの値0.745²⁰⁾よりも小さい。一 方,構造不整散乱損失(係数B)が0.03 dB/km 残ってい ることと、レイリー散乱と赤外吸収の和 $(A/\lambda^4 + \alpha_{\rm IR})$ がほ ぼ 0.14 dB/km であることを考慮すると、今後、作製プロ セスを理想的なレベルにまで改良できれば、世界最低損失 値 0.1484 dB/km を超える PCF の実現も期待できる。さら なる低損失化へのアプローチとしては、コアガラス自体の レイリー散乱を低減する方法が考えられる²³⁻²⁵⁾. そのため には、純石英ガラス以下のレイリー散乱を実現する各種 ドーパントの添加や、線引き時のファイバーの熱処理(徐 冷処理)条件の最適化などの手法の進展が期待される.

フォトニック結晶ファイバーの光伝送媒体としての可能性

3.1 広帯域・高速伝送特性の評価

図3にPCFを用いた高速伝送実験の報告例を示す.われ われも1.55 µm帯での10 Gb/sで100 kmの波長分散マネー ジドソリトン伝送¹⁹⁾ や,0.65 µm帯の可視光域から1.55 µm帯までの263 THz (SMFの単一モード周波数域の5 倍 相当)に及ぶ超広帯域 WDM 伝送²⁶⁾, PCF による DSF (1.55 µm帯分散シフト光ファイバー) 伝送路の波長分散 補償²⁷⁾, PCF の実験では最大容量の640 Gb/s 伝送²⁸⁾ など の検討を進めた.さらに,波長あたりの伝送速度が100 Gb/s を超えた際の検討として160 Gb/s OTDM (optical

図3 PCFを用いた高速伝送実験の報告例.(例:5×10Gの5は波長チャネル数を示す)

図4 1.0 µm 帯 WDM (10 Gb/s×4 ch) 伝送の実験系と SC 光スペクトル.

time-division multiplexing) 伝送²⁹⁾ を行い, PCF が将来の ペタビット級の光伝送に対応できる高いポテンシャルをも つことを実証してきた²¹⁾.

PCFの単一モード化が可能な 1.0 µm 帯において,純石 英ガラスでは理論損失限界値(レイリー散乱と赤外吸収の 和)が約0.5 dB/km 程度と比較的低く²³⁾,材料分散の絶対 値も 1.55 μm 帯と同程度である³⁰⁾. また, 各種の希土類 ドープ光増幅器のうち、広帯域で高出力特性をもつイッテ ルビウム光ファイバー増幅器 (YDFA) も利用可能なため, 1.0 µm帯は新たな通信波長帯として有望である。そこで、 PCF の検討初期から 10 Gb/s で 24 km³⁰⁾ および 40 Gb/s で 6 km 伝送³¹⁾, 1.55 µm 帯との 2 波長 20 Gb/s の WDM 伝送³²⁾ などの検討を進めてきた。図4に1.0 µm 帯 WDM (10 Gb/s ×4 ch) 伝送の実験系と測定結果の一例を示 す³³⁾. この実験ではパルス光源として, 波長 1.08 µm, パ ルス幅 10.5 ps のモード同期レーザーを使用して, YDFA での光増幅後に長さ1kmの低分散 PCF に入射し、図中に 示したような SC (スーパーコンティニウム) 光を発生さ せている、この PCF では構造パラメーターを調整するこ とで、従来の光ファイバーでは困難だった 1.0 μm 帯 (1.09 µm) でのゼロ分散波長を実現し, 効率よく自己位相 変調を発生させている。このSC 光をAWG (アレイ導波路 回折格子) に入射させて、0.8 nm 間隔の4 波長 WDM 信号 を作り, 波長1.08 µmで1.3 dB/km, 長さ6 kmの伝送用の PCF に入射させ、伝送後の4 ch の信号すべてについてエ ラーフリー動作を確認した.

3.2 低非線形・高入力光ファイバーとしての可能性

高速・大容量なWDMシステムにおいては、非線形光学 効果が伝送特性を制限すると考えられる。非線形効果を低 減するには、光ファイバーの実効断面積(A_{eff})の拡大が 有効であり、さまざまな光ファイバーの構造が提案されて

図5 W-PCFのA_{eff}と波長との関係.

いる⁴³⁾ (通常の SMF の A_{eff} の値は 80 µm² 程度). 一般に, Aeffの拡大は単一モード動作と曲げ損失の抑制に対してト レードオフの関係にあるが、PCF ではこの問題が緩和さ れるため、均一構造のPCFでのAeffの拡大もすでに検討さ れている^{44,45)} われわれは、さらなる拡大を目指して、図 5に示すような断面内構造をもち、実効的に W 型の屈折 率分布を実現する PCF (W-PCF) を提案した⁴⁶⁾. 汎用の SMF において W 型の屈折率分布(W-SMF)は Aeff の拡大 と曲げ損失の抑制に有効であることが知られており43),こ れを参考に、W-PCF ではコアに近接する第1層の空孔径 を拡大することで W 型の分布を実現した。数値計算に よって最適化した構造の W-PCF を作製し, 波長 1460~ 1625 nm での単一モード動作と汎用の SMF 以下の十分に 小さな曲げ損失を確認できた。図5は作製したW-PCFの A_{eff}と波長との関係である。黒丸は測定結果,破線は計算 結果を表す.構造を最適化した W-SMFと,従来の均一構 造 PCF の A_{eff} の値も比較のために示した^{44,45)}. W-PCF に おいては、測定結果と計算結果はよく一致し、W-SMF や 従来の PCF の 1.5 倍に相当する 220 µm² の A_{eff} が得られ た. さらに、W-PCFのAeffの波長依存性は非常に小さいた

図6 (a) ファイバーヒューズの実験系, (b) 接続点付近での ファイバーヒューズの挙動と PCF の断面写真.

め、広い波長帯での低非線形伝送が実現できる⁴⁷⁾.この W-PCFでは、2章で述べた低損失化のプロセスを完全には 適用していなかったため、空孔表面の凹凸での散乱損失が 生じ、波長1.55 mmでの損失は1.2 dB/kmであった。した がって今後、低損失化のプロセスを適用することによって 低損失性(図1,2)と低非線形性(図5)の両方を備えた W-PCFの実現が期待できる.

一方,WDMの波長チャネル数の拡張に伴い,光ファイ バーへの入力光パワーの拡大が予想される.その制限要因 としては,非線形光学効果に並んで,ファイバーヒューズ 現象が挙げられる⁴⁸⁾.ファイバーヒューズは高パワー光の 入力時に,光ファイバーの局所的な温度上昇をきっかけと してプラズマが発生し,光源方向へ向かってコア部分を伝 搬する現象である.ファイバーヒューズは,伝搬閾値(プ ラズマが伝搬し得る最低の光パワー)以下へ入力パワーを 低下させることで停止するが,汎用のSMFの伝搬閾値は 1.2~1.5W程度なので^{49,50)},波長チャネル数の拡張ととも に分布ラマン増幅技術の適用などが進展すれば,近い将来 にファイバーヒューズによる入力光パワーの制限が問題と なる可能性がある.

空孔型光ファイバーの HAF では,理論検討や空孔の位 置と伝搬閾値との関係について検討が進み^{51,52)},適切な空 孔配置を有する HAF において 15.6 W 以上の伝搬閾値が確 認された⁵³⁾. HAF では,光ファイバー被覆の温度上昇も 抑制できるため⁵⁴⁾,大パワー伝送用の光ファイバーコー ドといった新たなアプリケーションへの展開も期待でき る.一方,PCF では,波長 1.06 µm において 9 W 以上とい う伝搬閾値が報告されている⁵⁵⁾. われわれは既存の通信波 長帯での検討を進めた⁵³⁾. 図 6 (a) に示すように,実験で は波長 1.48 µm と 1.55 µm の CW 光を用いた. 波長 1.48 µm はラマンファイバレーザーを,波長 1.55 µm は ASE 光

源とバンドパスフィルターと EDFA を使用した。2 つの光 を合波し, Fiber 1 (DSF) を経て Test fiber (PCF) へ入力 した.ファイバーヒューズは Fiber 2 (DSF) の終端を放電 加熱することで発生させ、伝搬してきたファイバーヒュー ズが PCF を伝搬するかを観測した。実験に用いた PCF は、空孔数が 60 個で波長 1.48 µm でのモードフィールド 径 (MFD) が 6.5 µm であった. 図 6 (b) に、トータルの 入力光パワー12Wの条件で、ファイバーヒューズをFiber 2 (DSF) で発生・伝搬させ、その際に PCF との接続点を 撮影した連続写真と、接続点付近での PCF の断面写真を 示す. 撮影は 30 µs 間隔で行い,約 2.0 m/s で DSF を伝搬 してきたファイバーヒューズが接続点から約38 µm の地 点で停止する様子がとらえられた. PCFの断面写真での 中心部の大きな穴は高温のプラズマの侵入によって生じた もので、第1層目の空孔構造を溶融・破壊しているが、第 2層目の一部とそれ以降の空孔は残存した。このことか ら, PCF でのファイバーヒューズの停止は空孔構造に よってプラズマ密度の減少が引き起こされたためであり、 図6(a) でみられる高い輝度領域の断面方向への拡大につ いては、プラズマが放つ光が空孔で散乱されたものと考え られる。さらに、光源の出力限界である 14.3 W での実験 も行ったが、プラズマは PCF を伝搬することはなく、 Fiber 2 を用いずに PCF の端面を直接に放電加熱しても、 ファイバーヒューズは発生しなかった。この結果は、実験 に用いた PCF の伝搬閾値が 14.3 W 以上 (パワー密度に換 算すると 43 MW/cm² 以上) であることを示している。こ の値は既存の SMF の伝搬閾値の 10 倍に匹敵する. さら に、W-PCFなどの手法によって Aeffを拡大すれば、パワー 密度が低減されるためファイバーヒューズの抑圧にも有効 と考えられる.したがって、最適な空孔構造を有する PCF は非線形効果とファイバーヒューズの両方を抑制 し、入力光パワーの増大を可能とするため、伝送距離の長 延化とWDM 伝送システムにおける波長チャネル数の増加 に大きく寄与することが期待される.

本稿では、空孔型光ファイバーの低損失化技術の動向と 光伝送媒体としての可能性について概説した。HAF に関 しては、極限の低曲げ損失特性という利点を生かして、 ユーザー宅内の配線用光コードへの導入が進められてき た.近年、単一モード設計指針の確立、ファイバーヒュー ズへの耐性などに進展がみられ、新たなアプリケーション や適用領域の拡大が期待される.PCF に関しては、研究 レベルではあるが、汎用の SMF と全く遜色ない低損失化 が実現され、1.0 µm 帯などの新たな波長帯の活用が可能 など,光伝送媒体としての高いポテンシャルが伝送実験に よって示されてきた.加えて,WDMに伴う光パワーの高 入力化の問題に対しても,非線形現象を抑制するための A_{eff}の拡大,ファイバーヒューズへの耐性の両面で,既存 のSMFを大きく上回る特性が確認されており,長距離・ 大容量通信を支える次世代の光ファイバーの有力な候補と して期待される.今後の実用化展開に向けたおもな技術課 題としては,大型母材の作製技術,空孔の内面加工処理, 線引き時に空孔構造の均一性を保つ技術などが挙げられ, 当然ながら経済性との両立が求められる.また,接続技 術や長期的な信頼性などについても,改良の余地が残され ていると思われるが,今後もこれらの技術課題の解決に取 り組み,未来に繋がる知見を積み重ねていきたいと考えて いる.

文 献

- 1)藤田盛行,田中正俊,山取真也,鈴木聡人,小柳繁樹,山本 哲也:"フォトニック結晶ファイバ(1)",三菱電線工業時 報,99 (2002) 1-9.
- 2)周 健,中島和秀,田嶋克介,保苅和男,佐藤公紀,三川 泉:"フォトニック結晶ファイバの構内,宅内配線の適用に関 する検討",電子情報通信学会技術研究報告,OFT2002-81 (2003).
- K. Ieda, K. Nakajima, T. Matsui, I. Sankawa, T. Shitaba, S. Ikeda, K. Tajima, K. Shiraki, S. Tomita and T. Haibara: "Characteristics of bending loss optimized hole assisted fiber," Opt. Fiber Technol., 14 (2008) 1–9.
- T. Kurashima, K. Hiramatsu, H. Aoyama, K. Nakajima and S. Tomita: "Potential of hole-assisted fibres in optical access and in-house networks," *ECOC 2007* (2007) 6.1.1.
- 5) 鎌 光男,青山 浩,田中 浩,小田泰男:"D.I.Y感覚で光 配線を容易にできる曲げフリー光ファイバコードを開発", NTT 技術ジャーナル, 18 (2006) 65-67.
- 6)姚 兵,大薗和正,黒沢芳宣,立蔵正男,熊谷智宣: "低損 失ホーリーファイバの開発",電子情報通信学会技術研究報 告,OFT2003-27 (2003).
- K. Nakajima, T. Shimizu, T. Matsui, C. Fukai and T. Kurashima: "Single-mode hole-assisted fiber as a bending-loss insensitive fiber," Opt. Fiber Technol., 16 (2010) 392–398.
- S. Aozasa, Y. Enomoto, H. Oohashi and Y. Azuma: "Highly reliable optical fiber distribution facilities in central office employing single-mode hole-assisted fiber cord," *59th IWCS*, 5-4 (2010).
- T. A. Birks, J. C. Knight and P. St. J. Russell: "Endlessly singlemode photonic crystal fiber," Opt. Lett., 22 (1997) 961–963.
- P. J. Benett, T. M. Monro and D. J. Richardson: "Toward practical holey fiber technology: Fabrication, splicing, modeling, and characterization," Opt. Lett., 24 (1999) 1203–1205.
- W. J. Wadsworth, J. C. Knight, A. O. Blanch, J. Arriaga, E. Silvestre and P. S. J. Russell: "Soliton effects in photonic crystal fiber at 850 nm," Electron. Lett., 36 (2000) 53–55.
- 12) H. Kubota, K. Suzuki, S. Kawanish, M. Nakazawa, M. Tanaka and M. Fujita: "Low-loss, 2 km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band," *CLEO 2001*, CPD3-1 (2001).
- 13) J. A. West, N. Venkataramam, C. M. Smith and M. T. Gallagher:

"Photonic crystal fibers," ECOC 2001, Th.A.2.2 (2001).

- 14) K. Tajima, K. Nakajima, K. Kurokawa, N. Yoshizawa and M. Ohashi: "Low-loss photonic crystal fibers," *OFC 2002*, ThS3 (2002).
- 15) L. Farr, J. C. Knight, B. J. Mangan and P. J. Roberts: "Low loss photonic crystal fibre," *ECOC 2002*, PD1.3 (2002).
- 16) K. Tajima, J. Zhou, K. Nakajima and K. Sato: "Ultra low loss and long length photonic crystal fiber," *OFC 2003*, PD1 (2003).
- 17) K. Tajima, J. Zhou, K. Kurokawa and K. Nakajima: "Low water peak photonic crystal fibers," *ECOC 2003*, Th.4.1.6 (2003).
- K. Tajima: "Low loss PCF by reduction of hole surface imperfection," ECOC 2007, PD2.1 (2007).
- 19) K. Kurokawa, K. Tajima, K. Tsujikawa, K. Nakajima, T. Matsui, I. Sankawa and T. Haibara: "Penalty-free dispersion-managed soliton transmission over a 100-km low-loss PCF," J. Lightwave Technol., 24 (2006) 32–37.
- K. Nagayama, K. Kakui, M. Matsui, T. Saitoh and Y. Chigusa: "Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance," Electron. Lett., 38 (2002) 1168– 1169.
- 21) K. Kurokawa, K. Nakajima, K. Tsujikawa, T. Yamamoto and K. Tajima: "Ultra-wideband transmission over low loss PCF," J. Lightwave Technol., 27 (2009) 1653–1662.
- 22) R. T. Bise, D. J. Trevor, E. Monberg and F. Dimarcello: "Impact of preform fabrication and fiber draw on the optical properties of microstructured fiber," *51st IWCS* (2002) pp. 339–343.
- 23) K. Tsujikawa, K. Tajima and J. Zhou: "Intrinsic loss of optical fibers," Opt. Fiber Technol., 11 (2005) 319–331.
- 注川恭三,田嶋克介,大橋正治: "低レイリー散乱光ファイバ",電子情報通信学会論文誌 B-I, J86-B (2003) 1-12.
- 25) K. Saito, E. H. Sekiya, A. J. Ikushima, K. Ohsono and Y. Kurosawa: "Control of glass forming process during fiber drawing to reduce the Rayleigh scattering loss," J. Am. Ceram. Soc., 89 (2005) 65–69.
- 26) K. Ieda, K. Kurokawa, T. Shimizu, K. Tajima, K. Nakajima, T. Matsui, K. Tsujikawa, K. Shiraki and I. Sankawa: "Visible to infrared WDM transmission over PCF," *ECOC 2006*, Tu3.3.4 (2006).
- 27) K. Nakajima, T. Matsui, K. Kurokawa, K. Tajima and I. Sankawa: "High-speed and wideband transmission using dispersioncompensating/managing photonic crystal fiber and dispersionshifted fiber," J. Lightwave Technol., 25 (2007) 2719–2726.
- 28) K. Nakajima, K. Kurokawa and K. Tajima: "640 Gbit/s DWDM transmission over PCF using orthogonal polarization channel allocation," *ECOC 2007* (2007) P086.
- 29) T. Yamamoto, K. Kurokawa, K. Tajima and T. Kurashima: "160 Gbit/s OTDM transmission over 26 km PCF with demultiplexing technique employing phase modulation-based pump pulse generation," *ECOC 2008* (2008) P.4.3.
- 30) K. Tsujikawa, K. Kurokawa, K. Tajima, K. Nakajima, T. Matsui, I. Sankawa and K. Shiraki: "Application of a prechirp technique to 10-Gb/s transmission at 1064 nm through 24 km of photonic crystal fiber," IEEE Photon. Technol. Lett., 18 (2006) 2026– 2028.
- 31) K. Kurokawa, K. Nakajima, K. Tsujikawa, K. Tajima, T. Matsui and I. Sankawa: "Penalty-free 40 Gb/s transmission in 1000 nm band over low loss PCF," *OFC 2006*, OThH2 (2006).
- 32) K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima and I. Sankawa: "10 Gb/s WDM transmission at 1064 and 1550 nm over 24 km photonic crystal fiber with negative power penalties," IEICE Trans. Commun., E90-B (2007) 2803–2808.
- 33) K. Kurokawa, T. Yamamoto, K. Tajima, A. Aratake, K. Suzuki and T. Kurashima: "High capacity WDM transmission in $1.0 \,\mu$ m band over low loss PCF using supercontinuum source," *OFC*

2008, OMH5 (2008).

- 34) K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka and M. Fujita: "High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization maintaining photonic crystal fibre," Electron. Lett., 37 (2001) 1399–1400.
- 35) B. Zsigri, C. Peucheret, M. D. Nielsen and P. Jeppesen: "Transmission over 5.6 km large effective area and low-loss (1.7 dB/km) photonic crystal fibre," Electron. Lett., **39** (2003) 796– 798.
- 36) C. Peucheret, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen and M. D. Nielsen: "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett., **39** (2003) 919–921.
- 37) K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai and I. Sankawa: "Ultrawideband single-mode transmission performance in a low loss photonic crystal fiber," J. Lightwave Technol., 23 (2005) 7–12.
- 38) C. Fukai, K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa and I. Sankawa: "Distributed Raman amplification based DWDM transmission in a low loss photonic crystal fibre," *ECOC 2004*, We1.3.6 (2004).
- 39) K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui and I. Sankawa: "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett., 18 (2006) 451–453.
- 40) Y. Oikawa, H. Hasegawa, K. Suzuki, Y. Inoue, T. Hirooka and M. Nakazawa: "4×10 Gb/s WDM transmission over a 5-km-long photonic crystal fiber in the 800-nm region," IEEE Photon. Technol. Lett., 19 (2007) 613–615.
- 41) H. Hasegawa, Y. Oikawa, T. Hirooka and M. Nakazawa: "40 Gbit/s-2 km photonic crystal fibre transmission with 850 nm singlemode VCSEL," Electron. Lett., 43 (2007) 642–644.
- 42) N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi and H. Sotobayashi: "Simultaneous 3×10 Gbps optical data transmission in 1-μm, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system," Opt. Express., 18 (2010) 4695–4700.
- 43) T. Kato, M. Hirano, M. Onishi and M. Nishimura: "Ultra-low nonlinearity low-loss pure silica core fibre for long-haul WDM transmission," Electron. Lett., 35 (1999) 1615–1617.
- 44) K. Mukasa, K. Imamura, R. Sugizaki and T. Yagi: "Comparisons of merits on wide-band transmission systems between using extremely improved solid SMFs with $A_{\rm eff}$ of 160 μ m² and loss of 0.175 dB/km and using large- $A_{\rm eff}$ holey fibers enabling transmis-

sion over 600 nm bandwidth," OFC 2008, OThR1 (2008).

- 45) T. Matsui, K. Nakajima and C. Fukai: "Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wide-band transmission over conventional telecommunication bands," J. Lightwave Technol., 27 (2009) 5410–5416.
- 46) T. Matsui, T. Sakamoto, K. Tsujikawa and S. Tomita: "Singlemode photonic crystal fiber with low bending loss and $A_{\rm eff} >$ 200 μ m² for ultra high-speed WDM transmission," *OFC 2010*, PDPA2 (2010).
- 47) T. Matsui, T. Sakamoto, K. Tsujikawa, S. Tomita and M. Tsubokawa: "Single-mode photonic crystal fiber design with ultra large effective area and low bending loss for ultra-high-speed WDM transmission," J. Lightwave Technol., (2011) to be published.
- 48) R. Kashyap and K. Blow: "Observation of catastrophic selfpropelled self-focusing in optical fibers," Electron. Lett., 24 (1988) 47-49.
- 49) 瀬尾浩司,西村直也,椎野雅人,湯口廉一,佐々木宏和:"光 伝送路における耐ハイパワー特性の評価",古河電工時報, 112 (2003) 15-20.
- 50) IEC Technical Report: "Optical amplifiers part 4: Maximum permissible optical power for the damage-free and safe use of optical amplifiers, including Raman amplifiers," IEC 61292-4 (2004).
- 51) K. Takenaga, S. Tanigawa, S. Matsuo, M. Fujimaki and H. Tsuchiya: "Fiber fuse phenomenon in hole-assisted fibers," *ECOC 2008*, P.1.14 (2008).
- 52) H. Takara, H. Masuda, H. Kanbara, Y. Abe, Y. Miyamoto, R. Nagase, T. Morioka, S. Matsuoka, M. Shimizu and K. Hagimoto: "Evaluation of fiber fuse characteristics of hole-assisted fiber for high power optical transmission systems," *ECOC 2009*, P.1.12 (2009).
- 53) N. Hanzawa, K. Kurokawa, K. Tsujikawa, T. Matsui, K. Nakajima, S. Tomita and M. Tsubokawa: "Suppression of fiber fuse propagation in hole assisted fiber and photonic crystal fiber," J. Lightwave Technol., 28 (2010) 2115–2120.
- 54) T. Matsui, K. Nakajima, K. Kurokawa, K. Tajima, K. Shiraki and I. Sankawa: "Temperature-increase characteristics in bent holeassisted fiber under high power," J. Lightwave Technol., 25 (2007) 1231–1237.
- 55) E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov and I. L. Vorobjev: "Fiber fuse effect in microstructured fibers," IEEE Photon. Technol. Lett., 16 (2004) 180–181.

(2011年1月11日受理)