フォトニックバンドギャップファイバーと応用技術

松尾 昌一郎

Photonic Band Gap Fiber and Its Application Technology

Shoichiro MATSUO

An introduction and recent topics on photonic band gap fibers (PBGFs) are presented. The PBGF involves periodic structure in a cladding and confines light thanks to photonic band gap effect. A hollow-core PBGF (HC-PBGF) has periodically arranged air holes in a cladding and an air hole as a core. The HC-PBGF is expected to overcome the nonlinear limitation of a silica core fiber. The reduction of attenuation and the control of high-order modes are issues for a practical use. An all-solid PBGF (AS-PBGF) has periodically arranged high-index rods in a cladding and a solid glass core. The AS-PBGF is expected to be a device for a fiber laser thanks to the wavelength filtering function of the PBGF. Lasing wavelength control for a visible light laser is presented as an attractive application.

Key words: photonic band gap fiber, hollow-core photonics band gap fiber, all-solid photonic band gap fiber, fiber laser

フォトニックバンドギャップファイバー (photonic band gap fiber: PBGF) は、クラッド領域に形成された周期構造 により形成されるフォトニックバンドギャップ (photonic band gap; PBG)¹⁾を利用して、クラッドより低屈折率の コア領域に光を閉じ込める光ファイバーである。コアとク ラッドの比屈折率差を用いて, クラッドより高屈折率のコ アに光を閉じ込めるという従来の光ファイバーとは全く異 なる導波原理,構造を有している。1995年にシリカと空 気からなる構造による PBGF の理論的な提案がなされた 後²⁾, 1998年にクラッドよりも低屈折コアを有するファイ バーでのPBGによる導波³⁾,翌年には空気コア型のPBGF (hollow-core PBGF; HC-PBGF) による導波結果が報告さ れ⁴⁾, 2000年以降, PBGFの理論解析や試作による実証が 活発化していった. また, すべて固体ガラスからなるファ イバーでも PBG のような閉じ込め効果を示す全固体 PBGF (all-solid PBGF: AS-PBGF) が提案され⁵⁻⁷⁾,その応 用の範囲を広げている.

本稿では、PBGFの特徴を簡単に説明した後に、それぞれの PBGF の特徴および最近の研究動向を述べる.

1. 概 論

PBGFの構造例を図1に示す.コアの構造により大きく 2つに分類できる.

HC-PBGF は、周期的に配置された空孔からなるクラッ ドとクラッドの空孔よりも大きな径を有する中空コアによ り構成されている。図に示したファイバーの場合、クラッ ドの空孔直径は3.5 µm 程度である。HC-PBGFでは光の大 半が中空のコアに存在するために、その非線形性は空気と ほぼ同程度になるといわれており、ガラスのコアでは実現 できない超低非線形ファイバーや超低損失ファイバーとし ての応用が期待されている。

一方, AS-PBGF は, コアも含めてすべて固体ガラスで 形成された PBGF である. HC-PBGF が周期的に配列され た空孔により PBG を生じさせるのに対して, AS-PBGF で はクラッド部に高屈折率のロッドを周期的に配置すること により PBG を発生させ, 低屈折率のコア部への光を閉じ 込める. AS-PBGF の光の閉じ込めは高屈折率部での反共 鳴反射に由来し, HC-PBGF と異なりクラッドの周期性は 必要ないといわれている⁵⁾ が,本稿では PBGF に分類して 紹介する. AS-PBGF の最初の実証⁶⁾ は屈折率が 1.79 と

⁽株)フジクラ 光電子技術研究所(〒285-8550 佐倉市六崎 1440 番地) E-mail: shoichiro.matsuo@jp.fujikura.com

図1 フォトニックバンドギャップファイバーの構造による分類.

1.54 の silicate glass を用いて行われた. その後, 従来の光 ファイバー製造プロセスで製造可能な 1%程度の屈折率差 でも PBG が発生することが実証され⁷⁾, 実用を視野に入 れた研究が活発化した. コアを含めて固体であるという AS-PBGF の構造は, HC-PBGF に対するメリットでもあり デメリットでもある. メリットとしては, コア領域に種々 のドーパントが添加できることと, 接続の容易さがあげら れる. これらの特徴を生かして, 後述のようにファイバー レーザーの分野での応用が注目されている. デメリットと しては, コアが固体ガラスであるためにガラスの非線形性 からは逃げられないことがあげられる.

PBGF が通常のファイバーと最も異なる点は、光を透過 する波長帯と遮断する波長帯が交互に現れる点である。図 2 に AS-PBGF の構造 (a) と特性の例 (b) を示す。図 2 (b) で点が帯状に並んでいる領域は、規則的に配置された クラッドによるバンドであり、周期構造による閉じ込めが 発生しない領域であることを示す。点がない領域は規則的 に配置されたクラッドによるバンドが存在しない領域であ り、周期構造による閉じ込めが発生する領域である。等価 屈折率1.45の破線は、コア領域の屈折率に相当する。この 図の例では、1150~1700 nm、650~900 nm、450~580 nm

図3 フォトニックバンドギャップファイバーの製造方法.

の範囲ではコアに光が閉じ込められるが、それ以外の領域 では光がクラッドに散逸し、コアには導光されない帯域と なることを示している.この例では高屈折率ロッドの直径 *d*は2.1 μmとなっており、通常のシングルモード光ファイ バーのコア直径が9μm程度であるのに比べると、非常に 小さいことがわかる.

PBGFの製造方法には、図3に示すようなスタック&ド ローとよばれる方法を用いるのが一般的である.これは、 クラッドの周期構造を構成するキャピラリー(中空パイプ) や高屈折率部を有するロッドとコア領域の部材を最外周ク ラッドとなる管内に並べて母材を作製し(スタック)、 ファイバーとして線引きする(ドロー)方法である.空孔 を有する HC-PBGF は母材作製過程や線引き時の条件によ り空孔のサイズが大きく変化するため、製造に際しては従 来のファイバーの製造工程にはない技術が必要となる.

PBGF としては、同心円状に高屈折率部と低屈折率部を 配置したブラッグファイバーとよばれる構造もある⁸⁾. ブ ラッグファイバーは、通常の光ファイバーの製造で用いら れる MCVD (modified chemical vaper deposition) を用い て形成することが可能である.

図2 フォトニックバンドギャップファイバーの特性例.

2. 空気コア型フォトニックバンドギャップファイバー (HC-PBGF)

図1に示したように、HC-PBGFは周期的に配置された 空孔クラッドに対して、7つもしくは19個のクラッド単位 格子(セル)に相当する空孔を有するコアにより形成され る.PBGFの光学特性は、空孔直径 d、空孔間隔 A の比 d/A により強く支配される.透過帯域の広いバンドギャッ プを得るためには、d/A が1に近い、つまり非常に中空部 分の比率の大きな設計とする必要がある.また、コア周囲 のシリカリングに局在する表面モードとよばれる伝搬モー ドの存在も、設計上の課題となる.周期構造の乱れにより 表面モードとコアモードとの結合が発生すると、透過帯域 内に損失が高い波長が存在する問題が発生する.この表面 モードは、コア周囲のシリカリングの厚さを適切に設定す ることにより抑圧できることが示されている⁹⁾.また、構 造により表面モードの影響を低減する方法も提案されてい る¹⁰⁾.

HC-PBGF は、シリカガラスファイバーよりも低損失な 伝送路になることが期待されているが、今のところ報告さ れている伝送損失は 1.2 dB/km にとどまっている. HC-PBGF の損失要因については詳しい解析がなされてお り¹¹⁾、空孔の内壁面の粗さやコアの大きさに依存すること が指摘されている. 理論上最低損失を示す波長は通常の ファイバーよりも長波長側にシフトし、1900 nm において 0.13 dB/km になるといわれている.

HC-PBGFの低損失化のためにはコア径を7セル、19セ ルと大きくするとよいことが知られており、前述の最低損 失の PBGF も 19 セルの構造を有している. しかしなが ら、伝送用ファイバーとして考えた場合、コア径の拡大に 伴いマルチモード動作になる傾向がある点が課題であると いえる.7セルコアの場合でも10以上のモードが存在する が、高次モードの漏洩損失、散乱損失が大きいため実効的 にシングルモードとなる設計が可能である。しかしなが ら、さらにコアを大きくすると高次モードの漏洩損失も小 さくなり、実効的なシングルモード動作も困難になってし まい,低損失化とトレードオフの関係にある.低損失化の ためのコア拡大とシングルモード動作を両立させるため に、クラッドに7セルのコアを配置する構造によりコアの 高次モードを抑圧する手法が提案されている12,13).図4に 高次モード抑圧のための構造例を示す.19セルコアの PBGFのクラッド部に7セルのコアを6つ配置した構造に なっている。この構造では、19セルの中心コアの高次 モードと7セルの周囲コアの基本モードの伝搬定数はほぼ 等しくなるため、中心コアの高次モードと外側コア高次

図 4 高次モード抑制型フォトニックバンドギャップファイ バー. (a) 一般的な PBGF の構造例, (b) 高次モード抑圧型 PBGF の構造例.

モードの共振結合が発生し、中心コアの高次モードの漏洩 損失を4桁程度大きくすることができ、実効的なシングル モード伝搬が実現できるとしている.

3. 全固体フォトニックバンドギャップファイバー (AS-PBGF)

AS-PBGF は伝送用ファイバーとして検討された例もあ るが^{14,15)},本稿では,PBGF のフィルターとしての機能を 生かしたファイバーレーザーの分野での応用例を紹介する.

ファイバーレーザーの構成の一例を図5(a)に示す. ファイバーレーザーは、LD以外はファイバーで構成され、融着接続による安定した共振器となっている.また、 ファイバーの広大な表面積を生かしたレーザー媒質からの 効率のよい放熱や、ファイバー内への光閉じ込めによる高い励起光吸収効率により、従来のレーザーよりも低消費電 力になるといわれている.ファイバーレーザーは、ファイ バーの設計によりモードを制御できるために、すぐれた ビーム品質のレーザー光を得ることができる点が特徴であ る.レーザー媒質としては、ytterbium (Yb)をコアに添 加した YbDF (ytteribium doped fiber)が用いられる. YbDF はクラッドを2層有するダブルクラッド構造となっ ており(図5(b))、LD からの励起光は第一クラッドに入 射され、第一クラッド内を導波しながら Yb が添加された コアにトラップされるようになっている(図5(c)).

シングルモードで発振するファイバーレーザーは集光性 にすぐれるため、微細加工分野で注目されている.しかし ながら、シングルモード動作の光ファイバーはコア径を細 くする必要があり、高強度のレーザー光を伝搬させると非 線形光学現象の発生が避けられなくなる.このため、高出 力ファイバーレーザーの出力上限値は、誘導ラマン散乱 (stimulated Raman scattering; SRS)により決定されてい る.SRSの影響を低減する方法として、曲げ損失が許容さ れる範囲でコアクラッド間の比屈折率差を小さくしてコア

図5 ファイバーレーザーの構成とYbDFの構造. (a) ファイバーレーザーの構成例, (b) ダブル クラッド YbDF の断面と屈折率分布, (c) ダブルクラッド YbDF による増幅.

図 6 ハイブリッドフォトニックバンドギャップファイバーの構造例. (a) 試作ファイバーの断面 写真, (b) 試作ファイバーの構成.

径を拡大する方法や、多モード設計とすることでファイ バーの基本モードのフィールド径を拡大し、基本モードの みを励振してシングルモードファイバーとして利用する方 法などが用いられてきた. この SRS 低減に、PBGF を用い る方法が提案されている.本方法では、PBGF をローパス フィルターとして機能させることで SRS を抑圧する¹⁶. 通常のファイバーでは、レーザー光とストークス光がコア 内を同時に伝搬し相互作用することで SRSが発生する.し かしながら、レーザー光は透過し、レーザー光より長波長 側に発生するストークス光を遮断するような特性を有する PBGF を用いることにより、発生したストークス光を選択 的に漏洩させ、SRS の発生を抑えることが可能になる. ファイバーレーザー分野でのもうひとつの応用例とし て,発振波長の制御を紹介する.ファイバーレーザーの発 振媒体として用いられる YbDF は 1000~1200 nm 付近の波 長領域で利得を有するレーザー媒質であるが,1050 nm 付 近での利得が非常に高く,一般的にはこの波長での発振が 用いられている.また,レーザー光を非線形光学結晶に入 射させ波長変換することにより,倍波の光を得ることがで きる.YbDF の発振波長である 1000 nm 付近の光を SHG (second harmonic generation)素子に入射させることによ り,500 nm 近辺の可視光を得ることができる.YbDF で一 般的に用いられる 1050 nm の発振光では,520 nm 付近の 縁の光が発生する.近年,医療分野や天文分野などで,黄 色や橙色の高出力レーザー光源が注目されている. YbDF を用いて黄色や橙色の光を発生させるためには、YbDFを 1150~1200 nm の波長で発振させて SHG 素子に投入すれ ばよい. しかしながら、このような長波長側での YbDFの 利得は非常に小さく、長波長で発振するような共振器を組 んでも、より利得の高い 1050 nm 付近での寄生発振が発生 するという問題が発生してしまう.

このような問題を解決するために、PBGF をハイパス フィルターとして機能させる方法が提案されている^{17,18)} 図6は、このような発振波長制御のために開発されたファ イバーの一例である¹⁹⁾. このファイバーは,通常ファイ バーのような屈折率導波と、PBG による導波のハイブ リッド構造となっている。X軸方向は、高屈折率ロッドが 周期的に配列されたクラッド構造となっており、この高屈 折率クラッド層に由来する PBG により光を閉じ込める。Y 軸方向へは、通常のコアクラッド構造により光の閉じ込め が発生する. このようなハイブリッド構造には2つのメ リットがある、ひとつはポンプ効率の向上である、ファイ バーレーザー用のファイバーはダブルクラッド構造になっ ており、第一クラッドに入射された励起光が軸方向に伝搬 していくうちにコアにトラップされる.図1に示したよう な構造の AS-PBGF ではクラッドに高屈折率ロッドが存在 するために、クラッドに入射した光が、コアではなく高屈 折率層にトラップされる可能性がある。本ファイバーのよ うなハイブリッド構造では、少ない高屈折率ロッドで十分 な波長フィルター特性を維持しつつ、高屈折率ロッドによ るポンプ光のトラップを抑えてポンプ光の利用効率を高め ることが可能である。もうひとつの特徴は、偏波面保存 ファイバーとしての機能である。本ファイバーは 27 dB 程 度の偏波消光比を示し²⁰⁾,偏波面保存ファイバーとして十 分機能する能力を有する. したがって、本ファイバーによ り構成したレーザー光は、偏波面の制御された入射光が必

パーの製造方法. (a) スタック法による詰め込みの((b) 孔開 & スタック法による詰め込みの例.

要となる SHG を用いた波長変換素子用の光源として,非 常に適した特性を有しているといえる.

また、このファイバーはユニークな方法で作製されてい る. 図7に示すように、本ファイバーも PBGFの製法とし て一般的なスタック法により母材を組み上げることが可能 である. しかしながら、図3に示した孔開法とスタック法 を組み合わせて母材を組み上げることで、少ない手間で母 材の組み上げと損失低減が期待できる.本方法では、最初 に孔開法により Yb コアを有する母材に2つの空孔を作製 する.次に、この部分にバンドギャップを構成する高屈折 率ロッドと隙間調整用の低屈折率ロッドを詰め込み一体化 する. スタック法のみで組み上げた場合に比べて、詰め込 むべきロッドの本数が大幅に少なくなっていることがわか る. また、本方法では組み上げ時に Yb コアの周囲がク ラッドガラスに守られた状態が保たれており、ファイバー の損失を低減するうえで有利である.

図8(a)に本ファイバーの透過損失特性を示す.本ファ イバーは1150 nm 以上の光を透過するのに対して,1110 nm 以下の領域では20 dB 以上の損失が発生しており,ハ イパスフィルターとして動作可能な特性であることがわか る.図8(b)は本ファイバーを用いたファイバーレーザー

図8 試作ファイバーの透過損失特性(a)と発振スペクトル(b).

の発振スペクトラムを示す. 1050 nm 付近に寄生発振が発 生することなく, 1180 nm で発振していることがわかる²¹⁾.

本稿では、PBGFの現時点までの研究開発動向や課題 を、筆者らの研究成果を交えて紹介した。PBGFは従来の ファイバーと全く異なる導波原理に基づくファイバーであ るが、その存在が示されて以来 15 年を経過し解析も進 み、ファイバーレーザーのように PBGF ならではのアプリ ケーションが立ち上がりつつあり、部品用ファイバーとし て実用化に向けた進展が期待される。

伝送用光ファイバーとしては、屈折率導波型のシングル モードファイバーが確固たる地位を築いているのが現状で ある.しかしながら、今後の伝送容量拡大に向けて、ファ イバーの耐パワー性や非線形性低減が要求されており、 HC-PBGF が有する特徴が望まれている状況になりつつあ る.次世代の伝送用ファイバーとしての HC-PBGF の研究 開発が活発化することを期待する.

文 献

- E. Yablonovitch: "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., 58 (1987) 2059–2062.
- T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin and T. J. Shepherd: "Full 2-D photonic band gaps in silica/air structures," Electron. Lett., **31** (1995) 1941–1942.
- J. C. Knight, J. Broeng, T. A. Birks and P. St. J. Russell: "Photonic band gap guidance in optical fibres," Science, 282 (1998) 1476–1478.
- 4) R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. C. Allan: "Single-mode photonic band gap guidance of light in air," Science, **285** (1999) 1537– 1539.
- N. M. Litchinnister, A. K. Abeeluck, C. Headley and B. J. Eggleton: "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett., 27 (2002) 1592–1594.
- F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight and P. St. J. Russell: "All-solid photonic bandgap fiber," Opt. Lett., 29 (2004) 2369–2371.
- A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan and P. St. J. Russell: "Photonic bandgap with an index step of one percent," Opt. Express, 13 (2005) 309–314.
- 8) S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii and A. N. Guryanov: "Low-loss singlemode large mode area all-silica photonic bandgap fiber," Opt. Express, 14 (2006) 562–569.

- T. Murao, K. Saitoh and M. Koshiba: "Structural optimization of air-guiding photonic bandgap fibers for realizing ultimate low loss wavegueds," J. Lightwave Technol., 26 (2008) 1602–1612.
- 10) K. Takenaga, N. Guan, R. Goto, S. Matsuo and K. Himeno: "A new photonic bandgap fibre with extended triangular lattice and capillary core," *ECOC 2005*, Tu1.4.2 (Glasgow, 2005).
- P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight and P. St. J. Russell: "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express, 13 (2005) 236–244.
- 12) K. Saitoh, N. J. Florous, T. Murao and M. Koshiba: "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Express, 14 (2006) 7342– 7352.
- J. M. Fini: "Aircore microstructure fibers with suppressed higher-order modes," Opt. Express, 14 (2006) 11354–11361.
- 14) R. Goto, K. Takenaga, S. Matsuo and K. Himeno: "Solid photonic band-gap fiber with 400 nm bandwidth and loss below 4 dB/km at 1520 nm," *OFC/NFOEC 2007*, OML7 (Anaheim, 2007).
- 15) H. Wei, W. Tong, J. Guo, F. Zhang, Q. Han and J. Luo: "Ultralow loss all solid photonic bandgap fibre," *ECOC 2009*, 2.1.6 (Vienna, 2009).
- 16) T. Taru, J. Hou and J. C. Knight: "Raman gain suppression in all-solid photonics bandgap fiber," *ECOC 2007*, 7.1.1 (Berlin, 2007).
- 17) R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo and K. Himeno: "Claddingpumped Yb-Doped solid photonic bandgap fiber for ASE suppression in shorter wavelength region," *OFC 2008*, OTuJ5 (San Diego, 2008).
- 18) C. B. Olausson, C. I. Falk, J. K. Lyngsø, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev and J. Broeng: "Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all solid photonic bandgap fibre," Opt. Express, 16 (2008) 13657–13662.
- 19) K. Takenaga, M. Kashiwagi, S. Tanigawa, S. Matsuo and M. Fujimaki: "Low-loss ytterbium-doped polarization maintaining solid photonic bandgap fiber," *OECC 2009*, FM4 (Hong Kong, 2009).
- 20) M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki and K. Himeno: "5.6-W linearly-polarized fiber laser at 1180 nm employing low-loss ytterbium-doped polarization maintaining solid photonic bandgap fiber," *OECC 2010*, 7C4-2 (Sapporo, 2010).
- 21) M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki and K. Himeno: "Over 10-W linearly-polarized single cavity fibre laser at 1180 nm wavelength with slope efficiency of 56% using Yb-doped polarization-maintaining solid photonic bandgap fibre," *ECOC 2010*, Tu.5.D.3 (Torino, 2010).

(2011年1月11日受理)