三次元像の空中表示技術の現状と展開

宮 崎 大 介

Current Status and Future Prospects of Floating 3D Display Technology

Daiuske MIYAZAKI

Display technology forming a three-dimensional (3D) floating image in the air is reviewed. It is possible to obtain high reality and accessibility for a 3D display by forming a floating image. Some important recent researches on floating image generation are explained and classified. Some researches on floating 3D display performed by the author are introduced. One is a volumetric display system, in which floating image is formed with concave mirrors or a mirror array device. The other is integrated image display, which forms a floating 3D image with 360-degree viewing angle.

Key words: floating image, 3D display, stereoscopic display, volumetric display, integral imaging, imaging element

情報・通信技術の進展による情報量の増大に伴い、効率 的に情報を提示できるヒューマンインターフェースの重要 性は増す一方であり、特に映像情報インターフェースは今 後も大きな発展が期待されている。映像ディスプレイ技術 は、これまで解像度や画面サイズ、装置の薄さを競って進 んできた技術的進歩が飽和傾向にあり、最近は新たな質的 な転換が模索されている。そのようなアプローチのひとつ に、立体表示技術がある1-3). 画像処理技術の進歩により 実物と見分けがつかないほどリアルな映像を合成し、高精 細に表示することが可能となったが、立体表示はさらに高 い現実感をもたらす可能性がある。すでに多くの立体映画 が公開され、立体テレビが販売されるようになった4). 娯 楽用途以外にも, 医用画像の表示や製品設計などに立体表 示を適用することも検討されている。現在のところは眼鏡 式立体表示が主流であるが、レンチキュラーシートやパラ ラクスバリアを用いた裸眼立体ディスプレイの開発も進ん でおり、さらに自然な立体感を得るために、多視差化など さまざまな研究がさかんに行われている.

本稿では,何もない空中に三次元映像を形成することの できるディスプレイ技術について解説する.空中像形成に は,現実感を高め,アクセス性を向上させるなどの新たな 利便性を付加できる可能性がある.最近の代表的な三次元 像の空中表示技術を分類して解説し,具体例をいくつか紹 介する.さらに,筆者らによる空中結像を基づいた三次元 ディスプレイの研究を紹介する.ひとつは,凹面鏡やミ ラーアレイ結像素子により空間中像を形成し,ミラース キャナーにより走査する体積走査型三次元ディスプレイで ある.さらに,凹面鏡と回転ミラーを用いて,水平方向に 関して全周囲から観察可能とした空中像形成についても紹 介する.

1. 空中表示技術の意義

何もない空間に映像が浮かぶ様子はそれだけでインパク トがあり,SF映画やアニメなどでは未来の雰囲気を出す のに役立っている.空中像として表示すると,立体化して いない二次元画像であっても,周囲からは浮き上がってい ることから立体感を感じることができる.また,観察者に 表示装置の存在を意識させないことで,表示画像ではなく 現実の物と感じさせる効果がある.何もない空中に映像が 浮かぶ面白さは人の目をひくので,ディジタルサイネージ に利用することが期待できる.また,現実感の高い三次元 表示を博物館などでの展示に応用することが考えられる.

大阪市立大学大学院工学研究科(〒558-8585 大阪市住吉区杉本 3-3-138) E-mail: miyazaki@elec.eng.osaka-cu.ac.jp

図2 凹面鏡による空中像三次元形成.(a)球面凹面鏡,(b)二枚合わせ放物面鏡 による水平方向の全周囲から観察可能な実像形成.

空中像にすることの実用的な意義として,表示像へのア クセスの向上が挙げられる.表示画像を直接操作するよう なインタラクティブ性をもたせることは,現実感を高める のに有効である.三次元ポインティングデバイスを用いて 三次元像を操作したり^{5,6)},カメラで撮影した人の指先の 動きをポインターとして使うことなどが可能である⁷⁾.こ れらの応用のためには,ポインティングを妨げないように 空中に像を形成する必要がある.高精細な三次元映像を直 接ポインティングして操作できるようになれば,三次元 データに対する操作性は大幅に向上するので,工業製品の 設計や,医療における手術シミュレーション,遠隔手術な どへの応用が広がる可能性がある.

2. 空中像形成の手法

2.1 透明スクリーン, ハーフミラー

何もない空間に像を形成する容易な方法として,図1 (a)に示すように,透明度の高いスクリーンを置いて映像 を投影することが古くから行われている。大きな半透明ス クリーンを実現するために,霧に映像を投影することも行 われている⁸⁾.スクリーンとして使うためには,霧をシー ト状に薄く分布させる必要がある。また,図1(b)に示す ように、ハーフミラーを用いて、虚像として空中に浮かぶ 映像を表示することも行われている^{9,10)}.投影画像として 立体化されていない場合でも、空中映像とするだけで立体 感を感じることができる.これらの方法は本当の意味での 空中像形成とはいえないが、実質的には同等の効果が得ら れ、比較的大きなサイズの像形成が可能である.

2.2 結像素子による空中像形成

2.2.1 レンズ,凹面鏡

レンズや凹面鏡による実像を散乱媒体に投影せずに直接 観察する場合,各点からの光の広がり角は結像系の開口数 により決まるため,大きな観察角度を実現するためには口 径の大きい光学系が必要である.フレネルレンズは大きな 口径や非球面レンズも比較的安価に作成できるので,空中 像形成によく利用される¹¹⁾.凹面鏡は,材料として不透明 なものが使えるなど選択の幅が広いため,通常のレンズに 比べて大口径の結像素子を作りやすい⁹⁾.図2(a)の光学 系では,三次元物体を凹面鏡の中心付近に配置すること で,三次元実像が形成されている.光路が折り畳まれるの で,光学系の構成を小さくできる利点もある.図2(b)に 示すように,2枚の放物凹面鏡を用いたコンパクトな構成 で,全周囲から観察可能な空中像を歪みを抑えて形成する

図3 平板アレイ結像光学素子による空中像三次元形成.(a)レンズアレ イ,(b)ミラーアレイ面対称結像素子.

ことができる.

2.2.2 レンズアレイ結像素子

図3(a)に示すように、多くの微小レンズを並べたレン ズアレイを用いて空中像を形成することができる^{12,13)}.大 きな口径のレンズを1つ用いた空中像形成とは違い、レン ズアレイによる結像では、並べる光学素子の数を増やすこ とで焦点距離を保ったまま全体のサイズを大きくすること ができ、大きな像に対しても少ない歪みで結像することが 可能である.

2.2.3 ミラーアレイ結像素子

ミラーアレイ結像素子は、微小なミラーに入射する光を 1つの光線とみなし、多くのミラーによりそれらの光線を 制御して結像作用を実現する光学素子である。典型的な例 として,再帰性反射を利用した結像素子がいくつか提案さ れている。例えば、金属の平板において壁面が鏡面となっ ている正方形の貫通穴が多数空けられた透過型面対称結像 光学素子が提案されている14,15)、穴内の隣り合う二面の内 壁が二面コーナーリフレクターになっており、素子面に対 して面対称な位置に結像することができる。図3(b)で は、ミラーアレイ結像素子の下にディスプレイを配置し、 面対称な位置にその実像を形成している。レンズ等の結像 素子とは違い、焦点距離がないために像の形成位置が焦点 距離によって制限されず、素子のすぐそばにも像を形成す ることができる。また、レンズにあるような収差も、原理 的には存在しない。貫通穴での回折により像がぼけるの で、像の位置が素子から離れるほど解像度は低下する。ま た,像を観察できる位置は、ミラーを2回反射した光を観 察できる範囲内に制限される。この素子を利用した空中浮 遊三次元像の形成例として,著者らによる体積走査型三次 元ディスプレイに関する研究について後述する.

図4 立体ディスプレイによる空中三次元像形成. (a) イン テグラルイメージング, (b) フラットベッド型.

2.3 立体ディスプレイによる空中像形成

2.3.1 視差方式・光線再生法・フラットベッド型・全 周囲観察型

一般的な立体ディスプレイでは、図4(a)に示すよう に、そのままでディスプレイよりも前面に浮き上がる像形 成を実現することが可能である。しかし、ディスプレイ面 から像までの距離に制限がある場合が多い。例えば、視差 画像方式の立体表示では、表示像の位置がディスプレイか ら離れるほど立体視の生理的要因における輻輳・調節感の 矛盾が大きくなり、目の負担が増加する^{16,17)}.インテグラ ルフォトグラフィー等の光線再生方式の立体表示では、表 示物体から放出される光線を再現して像形成を行えるの で、より自然な立体感が得られる¹⁸⁾.しかし、点光源とマ イクロレンズにより光線を形成していることから、表示像 がディスプレイから離れるほど原理的に解像度が劣化する ため.表示装置からの像形成位置の距離には制限があ る¹⁹⁾.

光線再生方式の立体表示において、図4(b)に示すよう に、表示面を水平に設置するフラットベッド型の配置²⁰⁻²³⁾ にすると、奥行き方向の広がりは表示デバイス面方向に対

高輝度パルスレーザ xyzスキャナ 図5 高強度パルスレーザーの集光点走査によるプラズマ三 次元像形成.

応し,表示物体の高さが表示面からの距離に対応するの で,表示装置から像までの距離を大きくしなくても広がり のある三次元像を表示することができる.また,水平配置 にすると,表示装置を半透明板の下に設置してテーブル状 にすることで,表示装置を意識させなくすることができ る.さらに,観察可能角度を大きくして全周囲から観察で きるようにすると,表示像を回り込んで観察できることか ら,現実感をより高めることができる.全周囲観察の特長 は,複数人数で表示像を取り囲んで行う協調作業などに利 用できる.

2.3.2 体積走查型

空中映像ではないものの,スクリーンの回転等に基づく 走査により三次元的に光点を配置できる体積型三次元ディ スプレイでは,全周囲からの観察が可能であり,背景が透 けて見えることから浮遊感を得ることができる^{24,25)}. 蛍光 材料を含んだ透明なスクリーンを用いた手法では,さらに 高い浮遊感が得られる²⁶⁾.

散乱体を用いずに空中像を全方向から観察できる方法と しては、図5に示すような、高強度のパルスレーザーを 空気中で集光し、プラズマによる発光パターンにより空中 三次元像を形成する技術が開発されている²⁷⁾.高精細な 三次元像を形成するにはいたっていないが,媒体が不要な ため大型化に対応でき,全周囲から見ることができる真の 三次元像を形成できる点で,他の手法では得られない特長 をもつ.

結像光学系により形成された実像を高速に移動させて走 査を行うタイプの体積走査型三次元ディスプレイについて は、空中表示を行うことができる²⁷⁾.光学的実像により三 次元的に走査する方法として、可変焦点レンズにより高速 に縦方向に像を移動させる方法²⁸⁻³⁰⁾や、筆者らによる傾 斜像を横方向へ移動させる方法³¹⁾がある.後者の詳細に ついては後述する.

2.3.3 ホログラフィー

ホログラフィーは光波の再生により原理的に空中像形成 が可能であるが,現状では表示デバイスの解像度の限界に より,表示領域かあるいは観察可能角度が制限される.ホ ログラムの解像度不足を補うために,時分割多重や空間多 重に基づく表示領域および観察角度の拡張の研究がさかん になっている^{32,34)}.また,観察可能角度の制限があって も,人の目の位置を検出してその位置へ光が向くように再 生することで,角度の問題を解決することができる³⁵⁾.

2.4 立体ディスプレイへの結像素子の付加による空中浮 遊立体像形成

さまざまな立体ディスプレイで形成された三次元像は, 結像素子により実像を形成することで空中表示が可能であ る^{36,37)}.図6では,インテグラルイメージングに基づく立 体ディスプレイに対して,レンズを適用して浮遊立体映像 を形成している.光線再生型の三次元像形成では,高解像 度で像が形成できる領域が表示デバイスの前後にまたがる が,結像系を用いるとその全領域を空中像とすることがで きる.また,表示素子やスクリーンを動かして三次元空 間を掃引する体積走査型三次元ディスプレイに対して,結 像素子を適用して空中像を形成させる試みもなされてい る³⁸⁾.

図6 インテグラルイメージングに結像素子を導入することによる空中 三次元像形成.

図7 傾斜像面の走査に基づく体積走査型三次元ディスプレイ.

3. 傾斜像面による体積走査型三次元ディスプレイ

筆者による関連研究として,二次元実像の移動により三 次元的な走査を行う体積走査型三次元ディスプレイについ て述べる.

3.1 原 理

基本的なシステム構成は、図7に示すようにミラース キャナーが挿入された結像光学系において二次元ディスプ レイが光軸に対して傾斜して配置されており、その表示画 像の実像が空中に形成される.ミラースキャナーを駆動す ると光軸に対して垂直な方向に像が移動するので、その位 置に合わせて表示三次元物体の断面像を順次表示する.ミ ラースキャナーの駆動速度を十分速くすると、残像により 各断面像を同時に観測できるようになり、その結果として 三次元像が形成される.表示像の各点は結像光学系により 空間中に実際に配置されているので、焦点調節や輻輳と いった立体視の知覚要因をすべて満たした高精細な三次元 像を得ることができる.

筆者らの研究グループは,提案手法の実証を行うため に,結像素子として,レンズや凹面鏡,ミラーアレイ素子 を利用したシステムをこれまで試作してきた.残像の残る 時間内に多くの断面画像を表示する必要があるため,表示 素子としては高速応答性と高精細性を備えたディジタルマ イクロミラーデバイス (DMD) を利用した.

3.2 凹面鏡による実像形成

凹面鏡による空中結像を用いた体積走査型三次元ディス プレイの実験結果を示す³⁹⁾.光軸に対して 45 度傾けて配 置した背面投影スクリーンに DMD の画像を投影すると, 凹面鏡とミラースキャナーで構成される結像光学系によ

図8 体積走査型三次元ディスプレイによる空中三次元像形 成結果.

り,空間中に三次元実像が形成される.ミラースキャナー の振動周波数を20 Hzとし,DMDにより毎秒8,000枚で画 像表示で切り替えることで,200枚の切断画像により三次 元像を形成できる.DMDの画素数は1024×768なので, 三次元像の最大点数は1024×768×200となる.三次元像 の表示領域は1辺約150 mmの立方体である.DMDの各 画素の階調は二値であるため,ディザリング手法により多 階調表現を実現した.視野角は光学系の開口数により制限 され,水平方向に約±30度,垂直方向は約15度であっ た.表示した三次元画像の例を図8に示す.形成された三 次元像は,自然な立体感を有する空中像として観察するこ とができた.

3.3 ミラーアレイに基づく透過型面対称結像素子の利用

ミラーアレイに基づく透過型面対称結像素子を用いて空 中像を形成し、ミラースキャナーでその像を高速に移動さ せることで体積走査を行うシステムを構成した40.シス テムの構成図を図9に示す.透過型面対称結像素子は、直 径 80 mm の円形で,厚さ 150 µm のニッケル板に一辺 150 umの正方形開口の貫通穴が210 umの間隔で正方格子上 に並んだ構造をしている.本素子は、ナノ加工により銅製 金型を作成し、電鋳によってニッケルに転写したのち. エッチングによって金型を溶解することで製作された. 試 作した体積走査型三次元ディスプレイで表示した結果を図 10 に示す。表示像は、結像素子から約 80 mm 離れた位置 に三次元実像として得られた.像の観察可能角度は結像素 子のサイズにより約10度に制限されている。 ミラーホー ルでの回折や製造誤差等の影響による表示解像度の低下が みられた。原理的に収差を生じないことから、レンズや凹 面鏡を用いたシステムに比べて歪みの少ない三次元像を形 成できた.

図9 ミラーアレイ結像素子を用いた体積走査型三次元 ディスプレイ.

図 10 ミラーアレイ結像素子を用いた体積走査型三次元 ディスプレイによる空中三次元像形成結果.

4. 全周囲観察可能な浮遊三次元ディスプレイ

筆者らの研究グループは、全周囲から多人数で観察可能 なフルパララックス空中立体像表示技術の開発を目指し て、インテグラルイメージングに基づく立体表示技術に対 して半球凹面鏡と回転ミラーによる走査光学系を導入し、 水平方向の全周囲から観察可能な三次元ディスプレイを提 案している⁴¹⁾. 図 11 に提案するディスプレイシステムの 光学系を示す.光学系はインテグラルイメージング光学 系、リレー光学系、全周囲走査光学系の各部分により構成 される.インテグラルイメージング光学系の典型的な構成 として、二次元ディスプレイとレンズアレイの組み合わせ が考えられる.リレー光学系は、インテグラルイメージン グ光学系で形成された画像を全周囲走査光学系に導く結像 光学系である.全周囲走査光学系は、水平方向に周囲 360

図 11 全周観察可能なフルパララクス空中三次元像 形成ディスプレイの構成図.

度からの観察が可能な空中像を形成するため、半球凹面鏡 とその中心付近に置かれた回転ミラーにより構成されてい る.リレー光学系によって画像をミラー付近に結像する と、半球凹面鏡によって中心付近に再度空中像が形成され る.この空中像は、インテグラルイメージングに基づく立 体視が可能である.ミラーを回転させると、空中像の形成 位置は大きく変化しないが、画像の向きを360度変化させ ることができる.ミラーの角度に合わせてそれぞれの方向 から見える画像を高速に切り替えて表示することにより、 全周囲観察が可能な立体像を形成できる.水平方向の視差 は走査により実現でき、垂直方向の視差はインテグラルイ メージングに基づいて実現できる.

提案手法の有効性の検証のために、二種類の表示システムを試作した。第一のシステムでは、スキャナーミラーを 静止してインテグラルイメージングに基づく空中立体像形 成を確認した。第二のシステムでは、二次元画像を全周囲 走査光学系に入力し、ミラースキャナーを駆動して、全周 囲から観察可能な空中映像の形成を確認した。

第一の実験システムでは,液晶ディスプレイの後にレン ズアレイを配置してインテグラルイメージング光学系を構成した.インテグラルイメージングの原理に基づいて画像 を設計し,液晶ディスプレイに表示することによって,凹 面鏡による結像による空中立体像の形成が確認できた.観 察角度を上下左右方向に変えると,それに応じて変化する 視差画像が得られた.スキャナーミラーが駆動していない

(a) (b) 図 12 全周観察可能なフルパララクス空中三次元像形成の実験光学系.

図13 全周観察可能なフルパララクス空中三次元像形成の実験 結果.

ために,観察角度はリレー光学系の開口数によって約15 度に制限された。

次に,全周囲観察可能とするために,表示デバイスとし て高速動作が可能な DMD を用いたシステムを作成した. レンズアレイは用いていないので,インテグラルイメージ ングではない.図12に示すように,表示像の観察を光学 系が妨げないよう凹面鏡の下から画像を入射する構成にし た.ミラーを20 Hz で回転させ,三次元物体の観察角度を 変えた画像を DMD に1回転で400 枚の速度で表示するこ とにより,全周囲観から0.9 度方向ごとに変化する空中像 を凹面鏡の中心付近に形成することができた.図13に, 観察角度を約90 度変えて撮影したさいころの像を示す. 視差は全周囲走査と画像の切り替えにより得られているた め,視差の変化は水平方向のみであった.観察画像は光学 系の収差により歪んでいるが,これはあらかじめ表示画像 を歪みを考慮して補正しておくことで回避可能と考えている. インテグラルイメージングを適用した全周囲観察可能な フルパララクス空中立体表示の形成については、まだ十分 な結果が得られていない.リレー光学系では開口数の大き なレンズを複数用いたためにアライメント誤差に敏感な光 学系となり、さらにインテグラルイメージングでは空間的 な歪みだけでなく光線方向の正確さも要求されるため、光 線追跡のシミュレーションだけでは歪みを十分に補正する ことはできなかった.利用している光学素子の形状やアラ イメントのずれ等に対処するために、光学系に光を入射さ せて入力と出力の対応関係を測定し、実際のシステムに適 応したインテグラルイメージングの要素画像を生成する必 要がある.

本稿では、さまざまな光学技術を適用して、何もない空 中に浮遊する三次元映像の表示技術について解説した.ま た、筆者による研究例として、体積走査型の空中三次元像 形成および全周囲から観察可能な立体空中像形成技術を紹 介した.空中像とすることで、表示装置をあまり意識しな くなることから現実感が増し、さらに表示像との間を遮る ものがなくなるためにアクセス性が向上する.現実の世界 のさまざまなことがらが情報化され、流通されるように なったものの、その情報の利用形態の多くは平らなディス プレイ装置ごしに眺めるだけであった.情報を現実世界に 引き寄せて自然な形で利用できるヒューマンインターフェ イス技術の発展は、人の能力をさらに拡張できる可能性が ある。本稿で解説した技術は、データの世界と現実世界の 隔たりを減らし、融合をさらに深めることのできる映像イ ンターフェイスとなりうる.

これまでのディスプレイ技術における性能向上はおもに 電子デバイス技術の進歩により達成されてきたが、本稿で 示したような新たな映像体験をもたらすディスプレイ技術 の創造においては、光学技術が重要な役割を果たしている。 これからの付加価値の高い映像技術の発展には、光情報処 理や光学設計などの光学分野の多大な貢献が期待できる.

文 献

- 1) 宮崎大介: "三次元ディスプレイの最近の進展", 応用物理, 78 (2009) 646-649.
- 2) 榎並和雅: "総論―高臨場感システムの研究推進に向け て一",映像情報メディア学会誌,61 (2007) 578-582.
- 3) J. Son, B. Javidi and K. Kwack: "Methods for displaying threedimensional images," Proc. IEEE, 94 (2006) 502-523.
- 野澤哲生:"特集:3D ディスプレイ3度目の正直",日経エレ クトロニクス, No. 987 (2008) 55-79.
- 5) C. Luciano, P. Banerjee, G. M. Lemole and F. Charbel: "Second generation haptic ventriculostomy simulator using the ImmersiveTouch™ system," Proceedings of Medicine Meets Virtual Reality, 14 (2006) pp. 343-348.
- 6) D. Miyazaki, T. Honda, K. Ohno and T. Mukai: "Three-dimensional user interface using a haptic device for volumetric display," Information Photonics, 2008 (2008) pp. 198-199.
- 7) T. Komuro: "Vision-based 3D input interface technologies," The 17th International Display Workshops (IDW'10) (2010) pp. 1739-1742.
- 8) S. DiVerdi, I. Rakkolainen, T Höllerer and A. Olwal: "A novel walk-through 3D display," Proc. SPIE, 6055 (2006) 428-437.
- 石川 洵: "空間映像による映像と現実世界の融合", 立体視 テクノロジー (エヌ・ティー・エス, 2008) pp. 391–398.
- 10) 大塚理恵子: "小型で持ち運びが可能な 360 度立体映像ディス プレイ技術の開発", 立体視テクノロジー (エヌ・ティー・エ ス, 2008) pp. 222-225.
- 11) 加藤紀雄, 苗村 健: "2 つの結像系を用いた複合現実型空間 立像ディスプレイ",日本バーチャルリアリティ学会論文誌, 12 (2007) 323-329.
- 12) 岡野文男,洗井 淳,奥井誠人: "屈折率分布レンズアレーに よる3次元像の形成",レーザー研究,30 (2002) 731-736.
- 13) 石川 大: "箱庭的臨場感の提案とめがね無し小型立体表示 装置の開発", PIONEER R&D, 12 (2003) 47-58.
- 14) S. Maekawa, K. Nitta and O. Matoba: "Transmissive optical imaging device with micromirror array," Proc. Soc. Photo-Opt. Instrum. Eng., 6392 (2006) 63920E.
- 15) 板東宏記, 陶山史朗, 山本裕紹: "LED パネルの空中結像に向 けた高い開口比を有する RMGA の検討",映像情報メディア 学会技術報告, 35 (2011) 17-20.
- 16) T. Shibata, J. Kim, D. M. Hoffman and M. S. Banks: "The zone of comfort: Predicting visual discomfort with stereo displays," J. Vision, **11** (2011) 1–29.
- 17) S. Yano, S. Idea, T. Mitsuhashi, H. Thwaites: "A study of visual fatigue and visual comfort for 3D HDTV/HDTV images," Displays, 23 (2002) 191-201.
- 高木康博:"立体映像とフラットパネル型立体表示技術",光 18)学, 35 (2006) 400-409.
- 19) H. Hoshino, F. Okano, H. Isono and I. Yuyama: "Analysis of resolution limitation of integral photography," J. Opt. Soc. Am. A, 15 (1998) 2059-2065.
- 20) Y. Hiravama, T. Saishu, R. Fukushima and K. Taira: "Flatbedtype autostereoscopic display systems using integral imaging method", Digest of IEEE International Conference on Consumer

Electronics 2006 (2006) 125-126.

- 21) H. Takahashi, N. Kureyama, M. Chikayama and K. Yamada: "Flatbed-type three-dimensional display system as a tool for cooperation working," 3rd International Conference on Innovative Computing Information and Control (ICICIC) 2008 (2008) p. 57.
- 22) S. Yoshida: "fVisiOn: Glasses-free tabletop 3-D display: Its design concept and prototype," Digital Holography and Three-Dimensional Imaging, OSA Techinal Digest, DTuA1 (2011).
- 23) 堀米秀嘉,小池一郎,梅崎太造:"水平 360 度表示 3D ディス プレイ「Holo-Table」への実写撮影立体画像表示",第17回画 像センシングシンポジウム SSII 2011, DS1-09 (2011).
- 24) 宮崎大介: "真の3次元像を実現する体積走査型ディスプレ イ"、レーザー研究, 35 (2007) 16-20.
- 25) G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond and W. S. Chun: "100 Million-voxel volumetric display," Proc. Soc. Photo-Opt. Instrum. Eng., 4712 (2002) 300-312
- 26) S. Hisatake, S. Suda, J. Takahara and T. Kobayashi: "Transparent volumetric three-dimensional image display based on the luminescence of a spinning sheet with dissolved Lanthanide (III) complexes," Opt. Express, 15 (2007) 6635-6642.
- 27) H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jaru-sirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka and K. Ino: "Laser-plasma scanning 3d display for putting digital contents in free space," Proc. SPIE, 6803 (2008) 680309
- 28) A. C. Traub: "Stereoscopic display using varifocal mirror oscillations," Appl. Opt., 6 (1967) 1085-1087.
- 29) S. Suyama, M. Date and H. Takada: "Three-dimensional display system with dual-frequency liquid-crystal varifocal lens," Jpn. J. Appl. Phys., 39 (2000) 480-484.
- 30) 園田貴紀, 岡田裕也, 山本裕紹, 陶山史朗: "多焦点レンズと 高速 2D 表示を用いた新たな体積型 3D 表示方式の提案",動 的画像処理実用化ワークショップ 2011 講演概要集 (2011) pp. 349 - 353
- 宮崎大介: "光学的実像の移動による体積走査型三次元ディ 31) スプレイ",光技術コンタクト,48 (2010) 582-587.
 32) 吉川 浩: "ホログラフィー方式の技術動向", O plus E, 30
- (2008) 714–717.
- 三科智之:"立体電子ホログラフィー技術",電子情報通信学 33) 会誌, 93 (2010) 492-498.
- 34) M. Tanaka, K. Nitta and O. Matoba: "Wide-angle wavefront reconstruction near display plane in three-dimensional display system," J. Display Technol., 6 (2010) 517-521.
- 35) R. Häussler, A. Schwerdtner and N. Leister: "Large holographic displays as an alternative to stereoscopic displays," Proc. SPIE, 6803 (2008) 68030M.
- 36) H. Kakeya: "MOEVision: Simple multiview display with clear floating image," Proc. Soc. Photo-Opt. Instrum. Eng., 6490 (2007) 64900J.
- 37) S.-W. Min, M. Hahn, J. Kim and B. Lee: "Three-dimensional electro-floating display system using an integral imaging method," Opt. Express, 13 (2005) 4358-4369.
- 38) K Kameyama, K. Ohtomi and Y. Fukui: "Interactive volumescanning 3D display with an optical relay system and multidimensional input devices," Proc. Soc. Photo-Opt. Instrum. Eng., 1915 (1993) 12-20.
- 39) D. Miyazaki, T. Honda, K. Ohno and T. Mukai: "Volumetric display system using a digital micromirror device based on inclined-plane scanning," J. Display Technol., 6 (2010) 548-552.
- 40) D. Miyazaki, N. Hirano, Y. Maeda, K. Ohno and S. Maekawa: "Volumetric display using a roof mirror grid array," Proc. Soc. Photo-Opt. Instrum. Eng., 7524 (2010) 75240N1-75240N9.
- 41) 宫崎大介,赤阪亘弘,大小田健太,向井孝彰:"全周観察可能 なフルパララックス空中立体像表示法",第58回応用物理学 関係連合講演会講演予稿集, 27a-BJ-10 (2011).

(2011年7月28日受理)