フルフィールド極端紫外露光装置の開発

村上勝彦

Development of Full-Field Extreme Ultraviolet Exposure Tools

Katsuhiko MURAKAMI

Extreme ultraviolet (EUV) lithography is now actively developed as next-generation lithography after ArF immersion lithography. Nikon has been working on R&D of EUV lithography technology from its early stages, considering EUV lithography is the most promising future lithography technology. By concentrating all the R&D results, EUV exposure tools named EUV1, which were equipped with full-field projection optics with numerical aperture (NA) of 0.25, have been developed. In this paper, high-precision interferometer technology which was used for the metrology of aspheric mirrors for projection optics, resolution performance of EUV1, and contamination control technology for EUV exposure tools are reviewed. Finally, prospect for future EUV lithography is presented.

Key words: extreme ultraviolet (EUV) lithography, EUV exposure tool, aspheric mirror, interferometer, contamination

極端紫外 (extreme ultraviolet; EUV) リソグラフィーは, ArF 液浸リソグラフィーの次の世代の半導体デバイス製造 技術として、現在さかんに研究開発が進められている。波 長 13.5 nm の EUV 光を用いる EUV リソグラフィーは、マ スク上のパターンを,光学系を使ってウェハー上へ縮小投 影露光するという点では従来の光リソグラフィー技術と全 く同じである、しかしながら、露光波長が従来よりも1桁 以上短くなることから、さまざまな技術課題が生じる.光 学系に要求される精度は光の波長に比例するので、従来の 光学素子の加工計測技術を大幅に向上させる必要があっ た。また、エネルギーの大きい EUV 光はさまざまな化学 反応を励起して、光学素子のコンタミネーションを引き起 こす、ニコンでは、将来リソグラフィー技術の本命とし て、初期の段階から EUV リソグラフィー技術の研究開発 に取り組んできた¹⁻⁴⁾. その成果を結集して,開口数(NA) 0.25のフルフィールド投影系を備えた EUV 露光装置 EUV1 を開発した5).本稿では、投影系用の非球面ミラーの形状 測定に使用する高精度な干渉計測技術, EUV1の解像性 能, EUV 露光装置におけるコンタミネーション制御技術 について解説し、最後に将来の展望について述べる.

1. 投影光学系の開発

1.1 高再現性干渉計

従来よりも露光波長が1桁以上短いEUV 露光装置では、 光学系に要求される精度もそれに応じて厳しくなる。高精 度な光学系を製造するためには、まず十分な精度の計測技 術が必要である。投影系を作るためにはさまざまな計測装 置が必要だが、ここでは非球面ミラーの研磨加工時の計測 に使用するために開発された高再現性干渉計を紹介する⁶⁾. 面形状計測と修正研磨の繰り返しによって高精度な非球面 ミラーは加工される. このときに使用する面形状計測装置 は、安定して高い測定再現性が得られることが重要であ る. このような計測に従来はフィゾー型干渉計を用いてき たが、EUV 露光装置投影系用のミラーの加工には測定再 現性が不十分であったので、新たな干渉計を開発した.図 1に、従来の非球面形状を計測する干渉計と、新たに開発 した高再現性干渉計の構成を示す.いずれも、参照レンズ の下側のフィゾー面で反射した波面(参照波面)と被測定 ミラーで反射した波面 (測定波面)を干渉させて、その差 を測定するフィゾー型干渉計である。図1a)に示す従来 の干渉計では、フィゾー面は球面であり、被測定ミラーと

⁽株)ニコン コアテクノロジーセンター (〒252-0328 相模原市南区麻溝台 1-10-1) E-mail: murakami.k @nikon.co.jp

図1 非球面形状計測用フィゾー型干渉計の構成.a) 従来の 非球面計測用干渉計,b) 新たに開発した高再現性干渉計.

参照レンズの間に、測定しようとする非球面形状の波面を 生成するための非球面波生成レンズが配置されていた。そ のため、被測定ミラーと参照レンズの間隔は比較的大き い。干渉計は精密に温度制御された環境下に設置されてい るが、それでもごくわずかな温度むらによる空気ゆらぎが 測定結果のランダムなばらつきの原因となっていた.参照 波面と測定波面の光路が共通している箇所(フィゾー面よ りも上側) では空気ゆらぎの影響は両方の波面に同様に作 用するので、その影響はキャンセルされるが、被測定ミ ラーと参照レンズ間の空気ゆらぎは測定誤差に直接影響す る. そこで、図1b) に示す高再現性干渉計では、参照レ ンズを非球面生成レンズの下に配置して、被測定ミラーと 参照レンズの間隔を極力小さくすることによって、このよ うな空気ゆらぎの影響を排除して測定再現性を向上した. そのため、参照レンズのフィゾー面は、被測定ミラーと同 じ形状の非球面である.以上の施策は功を奏し,被測定ミ ラーを載せ降ろししない繰り返し測定の再現性で2 pmRMS, 被測定ミラーの載せ降ろしを行った場合の測定 再現性は6pmRMSという非常に高い測定再現性を実現す ることができた.本装置を使って、形状精度 100 pmRMS 以下の高精度な非球面ミラーの加工が可能になった.な お、 高再現性干渉計の絶対精度は参照レンズの精度に依存 する. そこで, 別の計測装置, 計測手段を駆使して参照レ ンズの精度較正を行っている。また、このように非常に高 精度なミラーは、その姿勢を変えただけでも重力により形 状が変化してしまう. そこで、ミラーを実際に使用する姿 勢で計測できるように、反射面が上向きのミラーの計測用 の干渉計と反射面が下向きのミラーの計測用の干渉計をそ れぞれ製作して,実際に使用する姿勢で面形状の測定を行 えるようにした.

1.2 収差とフレア

高再現性干渉計を駆使しながら,従来のウェット研磨に 加えて,イオンビーム加工等の新しい加工技術も用いて EUV1 投影系用の非球面ミラーの加工を行った. ミラーの形状 は,空間周期が1mm以上のLSFR (low-spatial-frequency roughness)領域,空間周期が1mmから1µmのMSFR (mid-spatial-frequency roughness)領域,および空間周期 が1µm以下のHSFR (high-spatial-frequency roughness) 領域のそれぞれの領域において,いずれも100 pmRMS 程 度以下の精度に加工する必要があった.LSFR 領域はいわ ゆる面形状精度に相当し,光学系の波面収差に影響する. MSFR 領域はうねりに相当し,光学系のフレアに影響す る.HSFR 領域は表面粗さに相当し,散乱によりフレアと 反射率の低下に影響する.新たに開発された高再現性干渉 計は,LSFR 領域の形状を測定する計測装置である. MSFR 領域の測定には市販の顕微鏡タイプの干渉計を, HSFR 領域の測定には市販の顕微鏡タイプの干渉計を,

このようにして加工された非球面ミラーの上に, Mo/Si 多層膜反射膜が形成される. 高反射率の Mo/Si 多層膜は スパッタリングにより成膜されるが, このような多層膜は 一般に圧縮応力をもっている. この応力は高精度に加工さ れた非球面ミラーの形状を変形させてしまう. そこで, 応 力を十分低い値まで低減することのできる新しい多層膜構 造を開発した.

このようにして製作した非球面多層膜ミラーを組み立て て光学系を製作するが、このような高精度なミラーはホー ルドするだけでも容易に変形してしまう.そこで、余分な 拘束力を極力排除して、ホールドによる変形を最小限に抑 えた新たなホールド機構を開発した.

光学系の組み立て調整を行うためには、波面収差を測定 する必要がある。従来の光露光装置では屈折率分散による 色収差があるので, 露光波長で波面を測定する必要があっ た. EUV 露光装置の光学系はすべて反射で構成されるの で,屈折率分散に起因する色収差は存在しない。しかし、 多層膜による反射は位相の変化を伴い、したがって、波面 収差は露光波長で測定する必要があるが、そのためには放 射光が必要となるので、工場で測定を行うことは容易では ない. そこで、工場で投影系の組み立て調整に使用する非 露光光による波面収差測定装置と,これを較正するための 露光光による波面収差測定装置の2つの測定装置を開発し た。後者は放射光の挿入光源であるアンジュレーターを用 いた測定装置で、兵庫県立大学ニュースバル放射光施設に おいて、ニコンとキヤノンの共同で研究開発を行った 7). 以上のようなさまざまな技術を駆使して EUV1 の投影系を 開発した結果, 露光波長 13.5 nm の 36 分の1 に相当する 0.4 nmRMS の波面収差を達成することができた。

図3 投影系入射瞳上での照明光の分布.a)通常照明,b) ダイポール照明.

フレアは波長の2乗に反比例して増大するので、従来よ りも露光波長の短い EUV リソグラフィーでは重要な課題 である.ミラー面形状の MSFR 領域を低減することによ り、フレアは低減される.EUV1 の投影系では、2 µmの パターンを用いたカーク法で測定したフレアは 8.5%で あった.この値は、ミラー面形状の PSD (power spectral density)から算出した値と非常によく一致した⁸⁾.その後 も研磨加工技術の向上を続けており、EUV1 投影系を製作 した当時は MSFR 領域も HSFR 領域も 100 pmRMS 程度 だったものが、現在ではいずれも 50 pmRMS程度まで低減 できるようになっている.この値を使って EUV1 投影系の フレアの量を見積もると 2.6%となる.今後開発する量産 対応の高 NAの EUV 露光装置において、フレアは 3%以下 にまで低減できる目処が立った.

2. EUV1 の結像性能

NA 0.25 の投影系を備えた EUV1 は, σ (コヒーレンス ファクター) 0.8 の照明系を備えている. σ 0.8 の通常照明 による L/S パターンの露光結果を図 2 に示す. 25 nmL/S は解像しているが,それ以下になると,モジュレーション はあるが解像は不完全である.投影系の解像力は照明条件 を変えることによって向上することができる.そこで,オ フ・アクシス照明の一種であるダイポール照明を用いた露 光実験を行った⁹. EUV1 は,照明系の中で投影系の入射 瞳と共役な位置にあるフライアイミラー上に,所定の形状 の開口を有する絞りを配置することが可能な構造になって おり,この絞りを交換することによって照明条件を変更す ることができる.図3に投影系の入射瞳上での照明光の分

0.7 0.6

布を示す. a) は σ 0.8 の通常照明, b) は露光実験に用い たダイポール照明である.

図4に、通常照明の場合とダイポール照明を用いた場合 のL/Sパターン像のコントラストの計算値の比較を示す。 σ 0.8 の通常照明ではパターンの寸法が小さくなるに従っ て像のコントラストは徐々に低下していくが、ダイポール 照明を用いると 22 nmL/S 付近までは像のコントラストの 低下が小さく抑えられており、30 nmL/S 以下のパターン では通常照明よりもダイポール照明がコントラスト向上に 有効であることがわかる.実際にダイポール照明を用いた 露光実験の結果を図5に示す。22 nmL/S パターンまで明 瞭に解像しており、19 nmL/S までモジュレーションが認 められる. この実験では瞳面上での照明光の外側の範囲が 瞳面の直径の 0.8 倍までのダイポール照明を用いたが、こ れを1に近づければ、さらに微細なパターンまで像コント ラストを向上してレジストパターンを解像することが可能 である. 以上のように、EUV リソグラフィーにおいて も、ダイポール照明が解像力向上に大変有効であることが 確認された。

図 6 $C_{10}H_{22}$ (decane) または C_6F_{14} (perfluorohexane) を導入して極端紫外光を照射したときのコンタミネーション成長 速度の極端紫外光照度依存性.

3. コンタミネーション制御技術

EUV 光がミラーに入射すると,光電子を発生する.ミ ラー表面に有機物が付着していると,発生した光電子はこ れを分解してカーボンのコンタミネーションを析出させ る.一方,表面に水分等が吸着していると,やはり光電子 によって分解されて多層膜ミラーの表面を酸化させる. EUV1では,露光中に酸素を導入し,EUV光と反応して生 成される酸素ラジカルによってカーボンコンタミネーショ ンを除去するコンタミネーション防止機構を採用した.コ ンタミネーションの成長速度は,放射光を用いた照射条件 を行って実験により求めた.図6にその実験結果の一例を 示す.

図 6 は、真空チャンバー中に $C_{10}H_{22}$ (decane) または C_6F_{14} (perfluorohexane) を 5×10⁻⁵ Pa 導入し, 試料に照 射する EUV 光の照度を変えてコンタミネーションの成長 速度を調べた結果である。EUV1では、照明系のミラーに 当初予想以上の速さでコンタミネーションが析出して,照 度の低下に悩まされた.いろいろと調べていくと、コンタ ミネーションの原因は装置内の冷媒に使用していたフロリ ナートのリークが支配的であることがわかってきた、フロ リナートの主成分である C₆F₁₄を用いたときのコンタミ ネーション成長速度が図6に示してある。当初はコンタミ ネーションの成長速度は EUV 光の照度に比例すると考え ていた.そして、EUV 光が比較的強い領域(図6の右側) で実験を行い、実機における EUV 光が比較的弱い領域 (図6の左側)でのコンタミネーション成長速度を外挿し て求めていた.図6に示すように、C10H22ではそれで正し いが、C₆F₁₄では正しくないことがその後明らかになった. 比較的照度の弱い領域ではコンタミネーション成長速度は 照度に比例するが、照度が高くなると飽和して照度に依存 しなくなる.これは、照度の低い領域ではコンタミネー

図7 EUV1 照明系透過率の経時変化.

図8 水蒸気雰囲気中でMo/Si多層膜ミラーに極端紫外光 を照射したときの反射率の相対変化.

ションの原料物質は十分に供給されており,コンタミネー ションの成長速度は光の量によって決まるが(光律速),照 度の高い領域では光は十分に供給されており,コンタミ ネーションの原料物質の供給が成長速度を決める(コンタ ミ源供給律速)ためである.以上のような考察に基づき, コンタミネーションの成長および除去を説明するモデリン グを構築して,コンタミネーションの定量的な予測が可能 になった^{10,11)}.酸素導入による洗浄効果も,実験結果に基 づいてモデリングに取り入れた.このようにして構築した モデリングを使って酸素の導入条件の最適化を行ったとこ ろ,図7に示すように,照明系のカーボンコンタミネー ションによる透過率の劣化を止めることができた.

EUV1ではいまだ光源の出力は低く、中間集光点で数W のレベルだったが、量産対応のEUV 露光装置では数百W レベルにまで光源出力が向上することが期待されている. そのため、ミラーへ入射するEUV 光の強度も高くなる. そうすると、カーボンコンタミネーションよりも多層膜表 面の酸化が支配的になることが予想される.これに対処す るために、多層膜ミラーの最上層に酸化防止層(capping layer)を設ける.EUV1では酸化防止層としてRuを用い たが、さらに耐酸化性を向上した酸化物材料からなる酸化 防止層を現在開発中である.図8に、1×10⁻³Paの水蒸気

表1 ArF 液浸と極端紫外リソグラフィーの k1 ファクターの比較.

	NA	32 nmHP	22 nmHP	20 nmHP	18 nmHP	16 nmHP	13 nmHP	11 nmHP	9 nmHP
ArF 液浸	1.30	0.22	0.15	0.13	0.12	0.11	0.09	0.07	0.06
193 nm	1.35	0.22	0.15	0.14	0.13	0.11	0.09	0.08	0.06
EUV 13.5 nm	0.25	0.59	0.41	0.37	0.33	0.30	0.24	0.20	0.17
	0.33	0.78	0.54	0.49	0.44	0.39	0.32	0.27	0.22
	0.35	0.83	0.57	0.52	0.47	0.41	0.34	0.29	0.23
	0.40	0.95	0.65	0.59	0.53	0.47	0.39	0.33	0.27
	0.45	1.07	0.73	0.67	0.60	0.53	0.43	0.37	0.30
	0.50	1.19	0.81	0.74	0.67	0.59	0.48	0.41	0.33

雰囲気中で酸化防止層の異なる Mo/Si 多層膜ミラーに, 8W/cm²のEUV光を照射したときのミラー表面の酸化によ る反射率の変化(初期値で規格化した相対値)を示す.従 来のRu酸化防止層を用いた場合と比べて,酸化物酸化防 止層を用いると,EUV光照射時の酸化による反射率の低 下を大幅に抑制できることがわかる.

4. 将来の展望

EUV リソグラフィー技術は実用化直前まで研究開発が 進んできたが,必要な EUV 光源出力の実証,レジストの LWR (line edge roughness)の低減,マスク欠陥検査装置 等のインフラ整備等,いまだ乗り越えなければならない課 題が残されている.一方,ArF 液浸ダブルパターニング技 術の実用化が進み,この方法で 22 nmHP 世代までのリソ グラフィーが可能になる見通しが立ってきた.

露光装置の解像力は $k_1 \times \lambda / NA$ で与えられる。 λ は波長, NAは光学系の開口数である。k1はリソグラフィープロセ スで決まる量であり、k1ファクターとよばれる.表1に、 ArF 液浸と EUV において所定の解像力を得るために必要 な k1 ファクターの値を示す. k1 ファクターは解像が可能 かどうかの目安となる数値であり、この値が大きいほどリ ソグラフィープロセスは容易で、小さいほど難しくなる. L/Sパターンの場合の k_1 ファクターの下限は0.25であり、 これよりも微細なパターンは原理的に解像することができ ない.ダブルパターニング技術は2回パターニングするこ とによって半分の寸法のパターンを形成するので、k1ファ クターの下限は 0.125 となる. ArF 液浸ダブルパターニン グでは, SMO (source mask optimization) 等の技術を駆使 して k₁ ファクターの限界に迫ろうとしている. 22 nmHP から 20 nmHP 付近までのパターニングはこの方法で可能 であるが, 18 nmHP 以下のパターニングはできない. 一 方, NA 0.25 の投影系を搭載した EUV1 では、ダイポール 照明で19nmL/Sを解像しており、位相シフトマスクを用 いるとさらに微細なパターンを解像できることが確認され ている⁹⁾. このことから, k_1 ファクターは, 少なくとも

0.33 までは実現できそうである。しかし、NA 0.25 では 16 nmHP 世代のリソグラフィーに対応するのはやや難しいの で、量産対応のEUV露光装置ではNAを拡大しなければな らない. NAを 0.35 程度に拡大すると 13 nmHP 付近までの 解像力が得られるので、16 nmHP 世代に対応するには十 分である。しかし、その次の 11 nmHP 世代に対応するこ とは難しい。EUV 露光装置は非常に高価な装置となるの で、初めからできるだけ長い世代に対応できるようにして おくことが望ましい。NAを0.4に拡大すると11 nmHPま で解像が可能である。さらに NA を拡大して 0.5 にするこ とができれば、9 nmHP の解像も可能になる. そこで、ニ コンではEUVリソグラフィーを16nmHPから11nmHPの 複数世代に対応するリソグラフィー技術と位置付け, NA を 0.4 以上に拡大した EUV 露光装置の開発に取り組んでい る。現在は、高NAのEUV投影系の光学設計検討を進める とともに、そのような光学系の製造を可能にするための加 工計測技術のさらなる向上や、コンタミネーション制御等 の EUV 露光装置に必要な基盤技術の開発を進めている。 一方,海外の競合メーカーは NA 0.33 の投影系を備えた EUV 露光装置の開発を着々と進めており、近いうちに出 荷を開始しようとしている。これらの装置が出回ることに より、光源、レジスト、マスクの開発も加速されることを 期待する。しかし、EUV リソグラフィーが本格的に半導 体デバイスの量産に使われるようになるには、まだしばら く時間がかかると考えられる。このタイミングに合わせて 適切な性能を有する EUV 露光装置を提供できるよう、準 備を怠らずに今後も開発を進めていきたい.

なお、本研究の一部はEUVAプロジェクトの一環として NEDO の支援のもとに行われました.

文 献

- 1) H. Oizumi, Y. Maejima, T. Watanabe, T. Taguchi, Y. Yamashita, N. Atoda, K. Murakami, M. Ohtani and H. Nagata: "Sub-0.1 μ m resist patterning in soft X-ray (13 nm) projection lithography," Jpn. J. Appl. Phys., **32** (1993) 5914–5917.
- 2) H. Nagata, M. Ohtani, K. Murakami, T. Oshino, H. Oizumi, Y.

Maejima, T. Watanabe, T. Taguchi, Y. Yamahita and N. Atoda: "Fabrication of 0.1 μ m line-and-space patterns using soft X-ray reduction lithography," Jpn. J. Appl. Phys, **33** (1994) 360–363.

- K. Murakami, T. Oshino, H. Kinoshita, T. Watanabe, M. Niibe, M. Ito, H. Oizumi and H. Yamanashi: "Ring-field extreme ultraviolet exposure system using aspherical mirrors," Jpn. J. Appl. Phys., 37 (1998) 6750–6755.
- 4) T, Oshino, S. Takahashi, T. Yamamoto, T. Miyoshi, M. Shiraishi, T. Komiya, N. Kandaka, H, Kondo, K. Mashima, T. Okuyama, H. Oizumi, I. Nishiyama and S. Okazaki: "Development of projection optics set-3 for high-numerical-aperture extreme ultraviolet exposure tool (HiNA)," J. Vac. Sci. Technol, B, 22 (2004) 2975–2979.
- K. Murakami, T. Oshino, H. Kondo, M. Shiraishi, H. Chiba, H. Komatsuda, K. Nomura and J. Nishikawa: "Developmet progress of optics for extreme ultraviolet lithography at Nikon," J. Micro/Nanolith. MEMS MOEMS, 8 (2009) 041507.
- 6) T. Miura, K. Murakami, K. Suzuki, Y. Kohama, Y. Ohkubo and T. Asami: "Nikon EUVL development progress summary," Proc. SPIE, 6151 (2006) 615105.
- K. Sugisaki, M. Okada, K. Otaki, Y. Zhu, J. Kawakami, K. Murakami, C. Ouchi, M. Hasegawa, S. Kato, T. Hasegawa, H.

Yokota, T. Honda and M. Niibe: "EUV wavefront measurement of six-mirror optic using EWMS," Proc. SPIE, **6921** (2008) 69292U.

- M. Shiraishi, T. Oshino, K. Murakami and H. Chiba: "Flare modeling and calculation for EUV optics," Proc. SPIE, 7636 (2010) 763629.
- 9) K. Murakami, T. Oshino, H. Kondo, H. Chiba, K. Nomura, H. Kawai, Y. Kohama, K. Morita, K. Hada and Y. Ohkubo: "Development of EUV lithography tools at Nikon," Proc. SPIE, **7969** (2011) 79690P.
- 10) K. Murakami, T. Yamaguchi, A. Yamazaki, N. Kandaka, M. Shiraishi, S. Mastunari, T. Aoki and S. Kawata: "Contamination study on EUV exposure tools using SAGA Light Source (SAGA-LS)," Proc. SPIE, **7636** (2010) 76361U.
- 11) M. Shiraishi, T. Yamaguchi, A. Yamazaki, N. Kandaka, T. Oshino and K. Murakami: "A simple modeling of carbon contamination on EUV exposure tools based on contamination experiments with synchrotron source," Proc. SPIE, **7969** (2011) 79690N.

(2011年9月30日受理)