磁気光学効果を用いた新しい空間光変調器

高木 宏幸・井上 光輝

New Spatial Light Modulator with Magneto-Optic Effect

Hiroyuki TAKAGI and Mitsuteru INOUE

We present new two type magneto-optic spatial light modulators (MOSLMs). First, the electro- and magneto-optical SLM (e-MOSLM) utilizing the concept of photonic crystals (PCs) for hologram data storages. We have theoretically analysed responses of e-MOSLM. The e-MOSLM can modulate the direction of polarization at a low voltage level (< 0.5 V) where high intensities (>99 %) of reflected signals are kept. Second, MOSLM with submicron-size pixels are promising for use in wide viewing angle glasses-free holographic three-dimensional displays (nano-MOSLM). In this study, we fabricated two-dimensional pixel array which is made of 800-nm-diameter magnetic domain with TbFe films by thermomagnetic recording. Furthermore, we observed high angle diffracted light by magnetic hologram obtained from this driven method.

Key words: magneto-optic spatial light modulator, magnetophotonic crystal, thermo-magnetic driven, amorphous magnetic film with perpendicular magnetization, three dimensional display

光情報通信技術(光IT)の著しい進展に伴って、光IT デバイス・システムの実現が熱望されるようになった。こ れら光デバイスのひとつとして, 空間光変調器 (spatial light modulator: SLM) がある. SLM は、二次元配列され たディジタル情報、つまりページデータ情報を光によって 処理するデバイスである。代表的な SLM には液晶 SLM が ある. 位相変調量 360 度程度を得ることができるが, 動作 速度は数 kHz 以下であった. これら背景のもと,われわ れは磁気光学効果を利用した空間光変調器 (magnetooptic spatial light modulator: MOSLM)の研究を行ってき た¹⁾. MOSLM は磁気光学効果によって光の偏波方位を制 御するデバイスである。磁化のスピン方位によって光を変 調できるため、高速駆動できる.磁性体を透過する光は、 磁性体透過後の右円偏光と左円偏光の位相が異なるため, 偏光面の回転を受ける.これをファラデー効果といい、磁 性体中の磁化 Mと伝搬光の方向 k が平行である場合に最 大となる.また,Mとkとが平行の場合と反平行の場合で は、偏光面の回転方向が逆になる。MOSLM はこのファラ デー効果を利用して二次元ピクセル表示を行う.図1に示

すように、イットリウム鉄ガーネット (yttrium iron garnet: YIG) などの透明磁性体中の磁化方位を上あるいは下方向 にそろえると、それぞれの領域を透過した光は互いに逆方 向の偏光面の回転を受ける.この光をどちらかの偏光を透 過する検光子を通して見ると、明るい領域と暗い領域が表 示される.MOSLM はこれをピクセルに対応させ表示す る.また、入力光を円偏光とすることで、位相変調器とし て使用できる.MOSLM は、(1) 磁化反転のスイッチン グスピードが早い、(2) 堅固・耐放射能性という特長を もつ.

MOSLM が初めて製品化されたのは,1979 年代の Litton 社による反射型 MOSLM であった.本デバイスは光を反 射モードで使用するため,ファラデー回転角は2倍の特長 を有する.一方,1ピクセルあたりの駆動電流は数百 mA 程度必要であり¹⁾,多数のピクセルを駆動させるには適し ていなかった.われわれはこれまで,逆磁歪効果を用いた 電圧駆動方式の開発,磁性フォトニック結晶(magnetophotonic crystal: MPC)構造²⁾を用いることで±30度程度 のファラデー回転をもつ MOSLM を開発してきた³⁾.

豊橋技術科学大学(〒441-8580 豊橋市天伯町雲雀ヶ丘 1-1) E-mail: takagi@ee.tut.ac.jp

図1 磁気光学空間光変調器.

ホログラムデータストレージや三次元ディスプレイの開発に伴い,新たな機能を有する MOSLM が求められている. これら背景のもとで,われわれはおもに下記の2つの MOSLM を開発している.

(1) ホログラムデータストレージ等への応用を目指し, 低消費電力で大きな偏光面変調が得られる MOSLM.特 に,MPC 構造の欠陥層に電気磁気光学膜を用いること で,欠陥層の光の局在状況を電気光学膜内のわずかな屈折 率変化で制御し,高い光の利用効率を保ったまま数V電圧 で大きな偏光面回転が得られるマルチフェロイック e-MOSLM.

(2) 究極的な三次元ディスプレイである電子ホログラ フィーを実現するために、ナノスケールのピクセルをもっ た位相変調型 MOSLM.特に、熱磁気書き込み方式を利用 することでレーザーの照射面積であるナノスケールのエリ アでピクセルを制御できる nano-MOSLM.

本報は、上記2つの MOSLM について報告する.

1. マルチフェロイック磁気光学空間光変調器

1.1 構造と原理

これまでわれわれは、MPC 構造を有する MOSLM を形 成するにあたり、MPC 構造中のわずかな屈折率変化で局 在状態が大きく変化することを見いだした.この結果か ら、屈折率変化を電気光学膜で行うマルチフェロイック e-MOSLM を提案した.図2に e-MOSLM の構造を示す. SGGG 基板側から直線偏光を入射すると、誘電体ミラー間 で光が多重反射を繰り返し、光は欠陥層に局在する.局在 する光の波長は、誘電体ミラーおよび欠陥層のそれぞれの 光学膜厚により決定される.基板からみて奥側の誘電体ミ ラーのペア数 k_r を、手前側の誘電体ミラーのペア数 k_f よ りも2倍程度多くすることで、透過光をほぼゼロとした反 射型デバイスになる.

磁気光学 (magneto-optic: MO) 材料には, 可視光領域で 透明かつ大きな MO 効果を有する Bi:YIG を用いている。 EO 材料には、同様に可視光領域で透明かつ大きな EO 効 果を有するチタン酸ジルコン酸ランタン鉛 (lead lanthanum zirconate titanate: PLZT) を用いている。PLZT に電界を印 加するための電極には、透明導電膜である酸化インジウム スズ (indium tin oxide: ITO) を用いている。以上の材料 を用いて、e-MOSLM の構造は基板側から順に Antireflection (AR) coat/SGGG substrate/(Ta₂O₅/SiO₂)^k/Bi:YIG/ITO/ PLZT/ITO/(SiO₂/Ta₂O₅)^kとなる(図2). 基板側から光を 入射させ、ITO 間の PLZT に電界を印加すると PLZT の複 屈折率が変化し、光の位相が変化する。位相の変化に伴い MPC の共振波長も変化するため、特定波長の光の偏光面 の回転角が変化する. このようにして, e-MOSLM は PLZTと Bi:YIG により EO 効果と MO 効果をマルチフェロ イック的に作用させ、光の偏光面の回転角を変調すること ができる.

1.2 マトリックスアプローチ法による駆動特性の計算

e-MOSLM の原理確認と構造設計の指針を得るため、マ

図3 波長780 nm での印加電圧に対する反射率および偏光 面回転角の計算結果.

トリクスアプローチ法を用いて駆動特性の計算を行った. Bi:YIG の光学定数は分光エリプソメーターおよび磁気光 学効果測定装置を用いて測定した.PLZT の光学定数は文 献⁴⁾にある pulsed laser deposition (PLD) 法により作製さ れた膜のものを使用した.なお、今回の計算では電極であ る ITO の膜厚は非常に薄いとし、簡単化のために省略して いる.

光の局在する波長(設計波長)は材料の吸収係数がほぼ ゼロとなる 780 nm とした.それぞれの膜の光学膜厚は, 誘電体ミラーは $\lambda/4$, MO 材料層と EO 材料層はそれぞれ $m \times \lambda/4$ (*m* は正の整数, MO 材料層は *m* = 8, EO 材料層 は *m* = 2)となるよう設計した.さらに, MO および EO 材料層の膜厚はスパッター法により一般的に成膜可能であ る 1 μ m 以下とし, EO 材料層については電極間の絶縁も 確保できるように 100 nm 以上とした. MO 材料層の物理 膜厚は 712 nm, EO 材料層の物理膜厚は 173 nm とした.

図3にAR coat/SGGG substrate/(Ta₂O₅/SiO₂)⁹/Bi:YIG/ PLZT/(SiO₂/Ta₂O₅)¹⁸の構造に直線偏光を入射し,光線方 向にBi:YIGを磁化させ,PLZTに印加する電界の大きさに 対する反射率と回転角の変化を示す.この結果から, PLZTの印加電界30 kV/cm程度で,回転角150度の変調が 可能である.

2. ナノスケール磁気ピクセル空間光変調器

2.1 構造と原理

立体表示の一方式であるホログラフィーは物体光の波面 状態を再現するため、眼球の運動、焦点調節などの視覚の 生理的要因に負担をかけることなく、裸眼において三次元 物体を見ることができる⁵⁾.

一般的にホログラムは写真、印刷等の手段を用いた静止

画の表示が中心であるが,例えば SLM 等を用いて電気的 な手段でホログラフィーを実現する方法に電子ホログラ フィーがある.電子ホログラフィーは,SLM によって干 渉縞を表示し,参照光を SLM に照射することで,物体光 の波面状態を再現できる.SLM は干渉縞を動画方式で表 示できるので,三次元像の動画を再生できる.

ホログラフィーが再現する立体画像の視野角は式(1) に示すように,ホログラムを表示しているデバイスのピク セルピッチに起因する^{6.7)}.

$$\phi = 2\sin^{-1} \left(\frac{\lambda}{2p} \right) \tag{1}$$

ここで ϕ は視野角, λ は光の波長,pはピクセルピッチ である。現在広く普及している SLM は、液晶ディスプレ イやプロジェクターなどに用いられている液晶 SLM や ディジタルミラーデバイス (digital mirror device: DMD) がある、これらSLMは1 μ m~10 μ mのサイズのピクセル が100万個程度で、二次元状に配列して構成されている。 従来の SLM でホログラムを表示した場合,式(1)より 視野角は約3度以下ときわめて狭くなる。そのため広視野 角 3D ディスプレイ実現のためには、光の波長であるナノ スケールのピクセルを多数配列して駆動する SLM が求め られている。しかしながら、現状において、ナノスケール のピクセルを有する SLM に多数のピクセル (1 億個 /1 cm²) が配列され、それぞれのピクセルを独立して制御す ることができる SLM は実現されていない。また、半導体 プロセスで作成された SLM には駆動配線やピクセル部分 が存在し、構造による回折光がホログラム再生像のノイズ となる. そのため、従来の SLM デバイスの延長上では、 上述の3Dホログラフィー用のSLMの実現は困難と考えら れる.

われわれは、光磁気記録で知られている熱磁気記録方式 が磁性メディアにナノスケールの磁区を形成していること に着目し、この手法を応用することで上記の要求を満たす SLMの実現を目指している。磁気ピクセルを形成する光 磁気記録材料は垂直磁化を有するアモルファス磁性薄膜を 用いている。パルスレーザーと高分解能のレンズを用い て、磁性薄膜表面にサブミクロンエリアに集光されたレー ザー光を照射し、キュリー温度まで加熱することで磁化を 局所的に消失させ、磁性膜の反転磁界により磁化反転さ せ、ナノスケールサイズの磁気ピクセルを形成することを 試みた。また、形成したナノスケール磁気ピクセルから広 視野角のホログラフィーの再生を行った。

2.2 実験結果

磁気光学膜には、熱磁気記録で広く研究されているアモ ルファス TbFe 薄膜(以下, *a*-TbFe 膜)を使用した. 優良

図4 微小領域熱磁気書き込み光学系.

な垂直磁化を示し常温で高い保磁力を得るため a-TbFe の 組成比は22:78とし, RFマグネトロンスパッター装置を用 いて作成した. 試料構造は, a-TbFe 膜の酸化防止層と特 定波長で磁気光学カー回転角をエンハンスさせる層を含む 3 層構造にした.マトリクスアプローチ法を用いた計算に よって, 試料の各膜厚は波長 600 nm 付近において磁気光 学カー効果が最も大きくなるよう SiO₂ 基板 /SiN (20 nm) /a-TbFe (100 nm)/SiN (50 nm)とした.作成した a-TbFe 膜の飽和磁化は 1.6 kG, 保磁力は 2.5 kOe であり,良質な アモルファス垂直磁化膜が得られた.また,波長 600 nm 付近において偏光面の回転角は最大 1.1 度が得られた.そ のときの反射率は 10% であった.

磁性膜に磁気ピクセルを形成するために、3 軸自動ス テージと高分解能レンズを搭載した微小領域熱磁気書き込 み装置を構成した(図4).熱磁気書き込みによる磁気ピク セル形成には波長 532 nm のパルス YAG レーザー (パルス 幅10 ns, 最大パワー3.4 mW)を使用し, a-TbFe膜のキュ リー温度の130℃以上に加熱させるよう局所的にレーザー 光の照射を行った。光を集光する高分解能レンズは NA = 0.5 のダブレットレンズを使用した.パルスレーザーを磁 性薄膜に照射した場合,表面ではただちにガウス系の熱分 布が生じる、この原理に基づきナノスケールの磁気ピクセ ルを形成する. レーザーパワーを変化させて磁気書き込み を行い、形成された磁気ピクセルの大きさを調べた。自動 ステージとパルス YAG レーザーを同期させ、複数の磁気 ピクセルの形成を行った.この装置のフォーカス位置調節 には、波長 633 nm の CW レーザーとシリンドリカルレン ズを用いて、CD-ROM ドライブ等の光ディスクの再生で 用いられているオートフォーカス方式を取り入れた.この 手順で形成した磁気ピクセルは、偏光顕微鏡、磁気力顕微 鏡 (magnetic force microscopy: MFM) 等を用いて評価し た、図4の微小領域熱磁気書き込み光学系を用いたレー ザーパワーに対する磁気ピクセルの直径を測定した. この

図5 原図 (a) とフーリエ変換像 (b) (128×128 pixels).

実験から磁気ピクセルはレーザーパワーが 50~190 uWの 範囲のときに形成されることがわかった。照射するパワー が200 uW以上の場合、エネルギー密度が高くなり磁気光 学膜の融解が起こった。40 uW以下の場合に磁気ピクセル が形成されなかったのは、試料表面の温度が磁化反転の温 度に達しなかったためと考えられる。また、レーザーパ ワーが小さいほど磁気ピクセルは縮小する傾向を示し, 50 µW のとき直径 800 nm の磁気ピクセルを形成できた。 レーザーを集光するレンズの回折限界は 1.2 um であるた め,上述で示した通り,表面にガウス系の熱分布を形成さ せ、レンズの回折限界を超えてナノスケールの磁気のピク セルが形成されていると考えられる。以上の結果より、微 小領域熱磁気書き込み装置を用いることで、ナノスケール の磁気ピクセルが高密度で配置され、配線がない SLM を 作成できた. これは SLM にホログラムを表示した際,表 面状態による回折光が発生しないため、低ノイズで再生で きることを示唆している.

磁気ピクセルからのホログラフィー像の再生を行った. 初めに,試料上に磁気ピクセルでフーリエ変換パターンを 描画した.このフーリエ変換パターンは特定の画像(図5 (a))を計算機でフーリエ変換し,位相情報のみを抽出し たのち二値化したものを用いた.このフーリエ変換パター ンのピクセルは1µmサイズで描画を行った.フーリエ変 換パターン(図5(b))を熱磁気書き込みした磁性膜の偏 光顕微鏡像(図6)を示す.磁性膜に描画したフーリエ変 換パターンは128×128 pixelsの磁気ピクセル(1µm幅) で形成した.

画像再生光学系を用いてこの試料の再生を行ったときの スクリーン像を図7(a)に示す.フーリエ変換前の原図 (図5(a))と磁気ピクセルからの回折光(図7(a))で同 じ像が得られており,この再生した画像は計算機上でフー リエ変換した像(図7(b))と一致している.フーリエ変 換パターンの磁気ピクセルから2Dのフーリエ像を表示す ることができた.また,視野角は式(1)の計算で求めた

図6 ナノスケール磁気ピクセルの偏光分光顕微鏡像.

図7 磁気ピクセルからの再生像(a)と,図5(b)の逆フー リエ変換像(b).

図8 3D ホログラム像. (a) 原図, (b) 奥の T の字にフォーカスを合わせたホログラム像, (c) 真中の U の字にフォーカスを合わせたホログラム像.

図9 画像再生光学系.

値と同じ 30 度であった.

最後に、物体像(図8(a))のホログラムパターンを、 二光束干渉光学系を用いて取得した。取得したホログラム パターンを、7 mm×7 mmのエリア(1 μm²/pixel)で形成 した.

画像再生光学系(図9)を用いてこの試料の再生を行っ たときの3D像を,図8(b),(c)に示す.記録した3D物 体(図8(a))と磁気ピクセルからの回折光(図8(b), (c))で,同じ像が得られている.またホログラム像は文 字の配置の奥行き,運動視差を表現できており,磁気ピク セルから3Dのホログラム像を表示することができた.ま た,視野角は式(1)の計算で求めた値と同じ 30 度で あった.これは,磁気ピクセルにより形成されたホログラ ムパターンを表示した際,広い視野角で再生することが可 能であることを示唆した結果である.

本報では、磁気光学空間光変調器(MOSLM)の最近の 研究成果を紹介した。新しい MOSLM として、磁性フォ トニック結晶を利用した高コントラストマルチフェロイッ ク e-MOSLM を提案し、理論計算から駆動特性の評価を 行った。e-MOSLM は低消費電力駆動(<5V)で、光の利 用効率が高く(>99%)、変調量が大きいこと(>150度) がわかった.今後は e-MOSLM を開発し,ホログラムデー タストレージ等のさまざまなアプリケーションへの応用を 検討する.

続いて、広視野角用電子ホログラフィー 3D ディスプレ イ用のナノスケールピクセルをもつ MOSLM の開発を紹 介した.実験では微小領域熱磁気書き込み装置を用いて、 アモルファス TbFe 垂直磁化膜上にナノスケールの磁気ピ クセルを二次元的に配列させることができた.また、磁気 ピクセルで形成したホログラムパターンからは、30 度の 視野角のホログラフィー像が再生できた.これは広視野角 の立体画像を十分に表示できることを示唆している.

文 献

 J. K. Cho, S. Santhanam, T. Le, K. Mountfield, D. N. Lambeth, D. Stancil and W. E. Ross: "Design, fabrication, switching, and optical characteristic of new magneto-optic spatial light modulator," J. Appl. Phys., 76 (1994) 1910-1919.

- M. Inoue and T. Fujii: "A theoretical of magneto-optical Faraday effect of YIG films with random multilayer structure," J. Appl. Phys., 81 (1997) 5659–5661.
- K. H. Chung, T. Kato, S. Mito, H. Takagi and M. Inoue: "Fabrication and characteristics of one-dimensional magnetophotonic crystals for magneto-optic spatial light phase modulators," J. Appl. Phys., **107** (2010) 09A930.
- 4) M. Gaidi, A. Amassian, M. Chaker, M. Kulishov and L. Martinu: "Pulsed laser deposition of PLZT films: Structural and optical characterization," Appl. Surf. Sci., 226 (2004) 347–354.
- 5) 三科智之: "立体電子ホログラフィー技術", 電子情報通信学 会誌, 93 (2010) 492-498.
- D. Gabor: "A new microscopic principle," Nature, 161 (1948) 777–778.
- T. Mishina, F. Okano and I. Yuyama: "Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones," Appl. Opt., 38 (1999) 3703–3713.

(2012年8月10日受理)