Tb 添加光ファイバーを用いた連続発振グリーンレーザー

大石泰丈

Tb-Doped CW Green Fiber Laser

Yasutake OHISHI

The ${}^5D_4 \rightarrow {}^7F_5$ transition of Tb³⁺ acts as the four-level laser transition in the green band. In the 1960s, the pulsed green laser operation was demonstrated with Tb³⁺ chelate in liquid solution using Xe flush pumping at room temperature. However, to the best of our knowledge, the continuous-wave (CW) laser action of Tb³⁺ has not been demonstrated. A photodarkening effect which potentially degrades the gain performance has been observed in Tb³⁺-doped germanosilicate and aluminosilicate glass fibers. We clarified that the pump excited absorption can be largely suppressed by using fluoride fiber as a host of Tb³⁺. We successfully demonstrated CW laser operation using Tb³⁺-doped fluoride fiber for the first time.

Key words: Tb-doped fiber laser, green laser, CW operation

可視領域における高品質・高効率なレーザー光源や光増 幅素子は、計測、加工、車載用通信分野等における応用が 期待される. Tb³⁺を使ったグリーンレーザーは 1970 年前 後に 2、3 例パルスレーザー発振が報告されているが、連 続発振 (continuous wave: CW 発振) は報告されていな い¹⁻³⁾. Tb³⁺添加石英ファイバーの光学特性も調べられて いるが、レーザー光を入射するとフォトダークニングが起 こり、損失特性が劣化することが知られている⁴⁾. われわ れは、0.54 μ m 帯に輻射遷移を有する Tb³⁺イオンに注目 し、種々のガラス導波路材料中での Tb³⁺の光増幅および レーザー媒質としての可能性を研究し、緑色の波長領域で ある 0.54 μ m 帯において世界ではじめて Tb³⁺を用いた光 信号増幅および CW レーザー発振に成功した. ここでは、 その概要を紹介する.

1. Tb³⁺の光学特性

表1に、ガラス中のTb³⁺のJudd-Ofelt (J-O) 解析およ び発光特性測定により求めたグリーンの遷移である⁵D₄ → T_5 遷移の特性をまとめた⁵⁾.また、図1にフッ化物ガラ ス中のTb³⁺イオンの発光寿命の濃度依存性を示すよう に、5 wt% まで寿命の低下はみられずTb³⁺のグリーンの 発光は濃度消光の起きにくい遷移といえる⁶⁾.また、どの ガラス中においても ${}^{5}D_{4}$ 準位の理論的な蛍光寿命と測定値 とほぼ一致し、90%以上の量子効率をもち、 ${}^{5}D_{4}$ 準位の非 輻射緩和はほとんど起こらないことがわかった. 増幅媒体 の性能指標となる $\sigma_{em}\tau_{meas}$ 値もフッ化物ガラスで 2.8× 10^{-24} cm²s であり、他の希土類イオン (Tm³⁺, Pr³⁺等)の レーザー遷移と遜色ない値を示していることがわかった. この事情は、他のガラスについても同様である. このよう に、 ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ 遷移自体は、レーザー発振遷移として適した 遷移といえる.

Tb³⁺添加光ファイバーの光増幅およびレーザー発 振特性

図2にTb³⁺イオンのエネルギー準位図を示す⁷⁾. 光増幅 やレーザー発振には、光増幅を起こす誘導放出遷移だけで なく、他の遷移が特性に大きく関与することがある. Tb³⁺の場合、光増幅特性を理解するには励起状態吸収を 考慮する必要がある.これは、Tb³⁺の5d準位が比較的低 エネルギーに位置していると考えられているためである. たとえば、488 nmの光で⁵D₄準位を直接励起すると、⁵D₄ 準位から5d準位への励起状態吸収が起こる可能性があ る.また、540 nm帯の信号光やレーザー発振光による励 起状態吸収も起こりえる.

5d 準位は、フッ化物等のハライド物質中では、酸化物

豊田工業大学先端フォトンテクノロジー研究センター(〒468-8511 名古屋市天白区久方 2-12-1) E-mail: ohishi@toyota-ti.ac.jp

Rare-earth doped glass	Emission wavelength (nm)	Radiative lifetime $ au_{meas}$ (ms)	Emission cross section $\sigma_{ m em}~(10^{-21}~{ m cm}^2)$	$\sigma_{ m em} au_{ m meas} \ (10^{-24}~ m cm^2 s)$
Er-doped silica glass	1532	11	5	30
Nd-doped fluoride glass	1300	0.45	8	3.6
Tb-doped fluoride glass	541	3.95	0.72	2.8
Tb-doped SBNACZ glass	542	2.61	0.81	2.1
Tm-doped fluoride glass	480	1.6	1.12	0.8
Pr-doped fluoride glass	1300	0.11	3.5	0.4

図1 ZBLAN 中 Tb³⁺の発光寿命の濃度依存性.

図2 Tb³⁺のエネルギー準位図と遷移.

中より 5d 準位が上位に位置していることが知られている. これを考慮し, Tb³⁺のホストとしてフッ化物ファイバー (ZrF₄-BaF₂-LaF₃-AlF₃-NaF (ZBLAN))を用いた.

光増幅実験は、Tb³⁺添加フッ化物ファイバー (Δn = 0.54%, コア径 = 2.3 μ m, カットオフ波長 = 0.47 μ m, 損 失 = 0.05 dB/m (波長 0.54 μ m), 長さ 10 m)をAr⁺レー ザー (励起波長:488 nm)で励起し、He-Ne レーザー (信 号光波長:543.5 nm, 信号強度-30 dBm)からの光を信 号光として行った.また、同ファイバーの両端にファイ バー・ブラック・グレーティング (反射率 99% と 19%,

図 3 Tb³⁺添加フッ化物ファイバーの 0.54 μm の利得の励起 光強度依存性 (実線は計算値).

反射波長 542.8 nm)を接続してファイバーレーザーを構成 し、レーザー発振実験を行った.

図3に光増幅実験の結果を示す7)。信号光と励起光とを 同一方向から入射した前方励起の場合,励起光量が115 mWのとき、5.2 dBの信号利得を確認でき、実際にTb³⁺ の⁵D₄→⁷F₅遷移による利得が生じることをはじめて明ら かにした.しかし、励起光量の増加に対して信号利得は飽 和する傾向を示すこともわかった。前方励起の場合におけ る Tb³⁺添加フッ化物ファイバーの利得特性シミュレー ションを,励起光および信号光の励起状態吸収および Tb³⁺イオン間の無輻射によるエネルギー移動により起こ る協同アップコンバージョンを考慮して行った。結果は図 3中の実線に示すように、励起準位である⁵D₄準位からの 励起光の励起状態吸収を考慮した場合に、実験結果の利得 飽和特性をよく再現する結果が得られた。このシミュレー ションにより、励起状態吸収の吸収断面積は⁷F₆→⁵D₄ 遷移 に対する吸収断面積の約9倍もの大きさであることがわ かった。また信号光の励起状態吸収や共同エネルギー移動 による利得特性の劣化は問題にならないと考えられる.

励起光の励起状態吸収の遷移確率は励起光パワーの2乗 に比例するため,前方励起よりも励起光パワー密度が低く なっている双方向励起と双方向励起されたファイバーを

図4 Tb³⁺添加フッ化物ファイバーレーザーの発振 特性 (挿入図は発振スペクトル).

2段にシリーズに接続した2段カスケード双方向励起の場合には、この励起状態吸収が抑制されて、信号利得が増加すると考えられる.そこで、双方向励起および2段カスケード双方向励起実験を行った.図3でわかるように、光ファイバーの両端から励起光を入射した双方向励起の場合には、励起光量が130 mWのとき 8.3 dBの利得が得られ、前方励起の場合よりも信号利得が向上することがわかった.また、2段カスケード双方励起の場合、最大で15.5 dBの利得が得られ、さらに信号利得が向上することがわかった.これらの結果から、488 nm 励起の場合、励起光の励起状態吸収が ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ 遷移の利得を低下させる大きな要因となっていると結論できる.

図4にTb³⁺添加フッ化物ファイバーによるファイバー レーザーの出力特性を示す^{7,8)}. Tb³⁺イオンによる波長 542.8 nmの連続レーザー発振をすることに初めて成功し た. 488 nm 励起で発振閾値が 60 mW, スロープ効率は 4.1% であった. レーザー出力特性は,ファイバー長等の パラメーターの最適化や励起法の改善により, さらなる向 上が期待できると考えられる. Tb³⁺の⁵D₄→ Υ_5 遷移による 0.54 μ m 帯の光増幅および CW レーザー発振に,世界で初めて成功した. ⁵D₄ 準位励 起を用いた Tb³⁺の ⁵D₄→ Υ_5 遷移による光増幅および CW レーザー発振を制限している要因は,励起光の励起状態吸 収であることを解明した.この励起状態吸収による特性劣 化は,ホスト材料の選定,具体的には Tb³⁺が高い 5d 準位 を取るホスト,励起光分布を空間的により均一励起に近づ けることにより抑えられることを示した.

本研究を中心となって推進した山下達弥氏の努力に感謝 するとともに,研究遂行に関して貴重な助言をいただいた 鈴木健伸准教授に深謝します.

文 献

- S. I. Andreyev, M. R. Bedilov, G. O. Karapetyan and V. M. Likhachev: "The stimulated emission of terbium-activated glass," Sov. J. Opt. Technol., 34 (1967) 819.
- S. Bjorklund, G. Kellermeyer, C. R. Hurt, N. McAvoy and N. Filipescu: "Laser action from terbium trifluoroacetylacetonate in p-dioxane and acetonitrile at room temperature," Appl. Phys. Lett., 10 (1967) 160–162.
- H. P. Jenssen, D. Castleberry, D. Gabbe and A. Linz: "Stimulated emission at 5445Å in Tb³⁺:YLF," IEEE J. Quantum Electron., 9 (1973) 665.
- G. R. Atkins and A. L. G. Carter: "Photodarkening in Tb³⁺doped phosphosilicate and germenosilicate optical fibers," Opt. Lett., **19** (1994) 874–876.
- T. Yamashita and Y. Ohishi: "Cooperative energy transfer between Tb³⁺ and Yb³⁺ ions co-doped in borosilicate glass," J. Non-Cryst. Solids, **354** (2008) 1883–1890.
- 6) T. Yamashita and Y. Ohishi: "Optical amplification at 0.54 μm by Tb^{3+-doped fluoride fiber," Electron. Lett., **43** (2007) 88–89.
- 7) T. Yamashita and Y. Ohishi: "Amplification and lasing characteristics of Tb³⁺-doped fluoride fiber in the 0.54 μ m band," Jpn. J. Appl. Pyhs. Express Lett., **46** (2007) L991–L993.
- 8) T. Yamashita and Y. Ohishi: "A new green fiber laser using terbium-doped fluoride fiber," *Technical Digest of Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC NFOEC 2008)*, JWA18 (2008).

(2013年6月6日受理)