超短パルスレーザーイオン化質量分析

今坂 藤太郎

Mass Spectrometry Using an Ultrashort Laser Ionization Source

Totaro IMASAKA

A femtosecond laser can be used as an ionization source in mass spectrometry for trace analysis of persistent organic pollutants by a combination with a separation technique such as gas chromatography. A two-dimensional display available based on gas chromatography/mass spectrometry is useful for determination of the sample containing numerous chemical species at ultratrace levels.

Key words: femtosecond laser, mass spectrometry, trace analysis, persistent organic pollutant

材料, 生体, あるいは環境中に存在する微量物質を測定 するため、質量分析法がよく用いられている.たとえば、 土壌中に存在するダイオキシンを分析する場合には、土壌 中に存在する多量の有機物質の影響を排除しながら、目的 とする極微量のダイオキシンを測定する必要があるので, きわめて選択的かつ高感度な分析機器が必要である。この ような質量分析では、中性の分子をイオン化して質量を求 める。たとえば電子を用いてイオン化する方法、すなわち 電子イオン化法は質量分析において広く利用されている。 イオン化室で多くの電子と衝突させるのでイオン化効率が 高いが、実試料の分析において夾雑成分もイオン化してし まい、バックグラウンド信号が高くなる問題点がある。こ のため検出感度を向上させるには,高分解能質量分離装置 を用いる必要がある。たとえば、ごみ焼却場の廃ガス中 に含まれ得る極微量のダイオキシンを測定するには. 1/1000の質量単位(炭素原子を12.000とする)まで分離で きる二重収束型高分解能質量分析計を用いることが日本工 業規格 (JIS) で定められている。最近では、紡錘形の電 極中にイオンがトラップされ高速フーリエ変換により高分 解能が得られる Orbitrap 型のあるいはフーリエ変換型の質 量分析計などが開発されており、1/50000の質量単位を分 離できる装置も市販されている.しかし、このような方式 は測定する質量があらかじめ定められている場合に用いら れることが多く, また, データ量が大きくなる問題点があ

る. もし,イオン化過程において選択性を適宜調整することができれば,このような問題点を解決するとともに,未 知成分を網羅的かつ迅速に測定することが可能になる.

1. レーザーイオン化

レーザーイオン化法は、真空紫外1光子イオン化法、紫 外レーザーを用いる共鳴励起多光子イオン化法、可視・近 赤外レーザーを用いる非共鳴多光子イオン化法などに分類 できる.この中でも共鳴励起多光子イオン化法は、図1の ようにレーザーのエネルギー(波長)が試料分子の励起エ ネルギーに一致したときに選択的にイオン化できるので、 選択性および感度が高く、実用分析に広く利用されてい る.本稿では、この方法について詳しく述べる.

1.1 選択性の向上

イオン化過程において選択性を向上させるには,超音速 分子ジェット法により試料分子を絶対零度付近まで冷却 し、単色なナノ秒レーザーを用いて共鳴イオン化する方法 がある.この方法では、分子を基底状態の最低準位に位置 させることができるので、単色なレーザーを用いて目的と する分子を励起してイオン化できる.したがって、高い選 択性が得られる.このため時々刻々と濃度が変化する成分 をオンライン分析する際に利用することができる.しか し、超音速分子ジェット法による選択性の向上は100倍程 度であり、非共鳴イオン化の影響を完全に抑制することは

九州大学大学院工学研究院(〒819-0395 福岡市西区元岡 744) E-mail: imasaka@cstf.kyushu-u.ac.jp

図1 一重項励起状態ならびに三重項励起状態を経由す るイオン化過程.

できない、このため多量の夾雑物存在下で極微量の物質を 測定する場合には、何らかの分離手段と組み合わせる必要 がある。中でもガスクロマトグラフと結合する方法は、き わめて選択的な分析が行える¹⁾.しかし、レーザー波長を 瞬時に掃引できないので、多成分を同時に測定することは できない。また、冷却効果と分析感度を高めるために用い られるパルスノズルは死容積が大きく,使用最高温度もそ れほど高くない。一方、連続試料導入方式により十分な冷 却効果を得るには、キャリヤーガス流量を10mL以上に設 定する必要がある^{2,3)}.通常のガスクロマトグラフのキャ リヤーガス流量は1mL程度であり、超音速分子ジェット 法とガスクロマトグラフの相性はよくない、したがって、 ガスクロマトグラフの分離機能あるいはレーザーの波長掃 引機能のいずれかを選択することになる。性能的には前者 が優れており、これを採用することを前提とすれば、吸収 スペクトルが狭い超音速分子ジェット法に有益な単色な レーザーは必ずしも必要ない.

1.2 フェムト秒レーザー

測定対象物である有害物質や生理活性物質の多くは,分子内に塩素や臭素などの重原子を含んでいることが多い. この場合には図1のように系間交差が速やかに起こり,一 重項励起状態の寿命が短くなる.一方,ニトロ基や長い側 鎖を有する化合物も同様に励起寿命が短くなる.このとき ナノ秒レーザーを用いるとイオン化効率が大きく低下す る.レーザーのパルスエネルギーを大きくしても,分子あ るいはイオンの開裂が進行して分子イオンが検出されなく なり,分析の感度,選択性が低下する.このような場合に 短波長のレーザーを用いて三重項からイオン化する方法が 提案されているが^{4.5)},このような方式が有用でない場合 もある⁶⁾.したがって,励起一重項から直接イオン化でき ることが望ましい.このためにはフェムト秒レーザーのよ うにパルス幅が短いレーザーを用いる必要がある.

図2 フェムト秒レーザーをイオン化光源とするガスクロマ トグラフ質量分析装置.

1.3 高感度化

多光子イオン化では、一般にレーザーのエネルギーを増 大させるとイオン化効率が増大する.しかし、前述のよう にエネルギーが大きくなり過ぎるとフラグメント化が進行 する.レーザーイオン化は分子の開裂が少ないことが特徴 であり、その優位性を失うことになる.また、エネルギー の増大により一度に多数のイオンが生じると、レーザー光 が照射された一点に電荷が集中することによりイオン同士 が反発し、イオンの検出効率が低下する.このため感度が 減少するだけでなく、イオンの初期速度分布が大きくなり 質量分解能も低下する.このような好ましくない現象を抑 制するには、レーザーのエネルギーを小さくする必要があ る.このため生成するイオンの全量を多くするには、レー ザーの繰り返し速度を高くして平均出力を増大させること が望ましい.

1.4 実用性

図2は上記の問題を解決した分析装置の一例である。多 くの夾雑物を含む実試料を分析するためガスクロマトグラ フ装置と結合している。容積が小さなノズルを用いて高温 に加熱した試料を質量分析計に連続的に導入するため、ガ ラスキャピラリーをインターフェースとして用いている. レーザーは、前述のように繰り返し速度を高くして平均出 力を大きくすることが望ましいが、飛行時間が数10 us で あることを勘案すると、繰り返し速度の上限は数 10 kHz となる。一方,環境汚染物質や農薬は塩素などの重原子を 含むので、励起寿命が短い. そこでフェムト秒レーザーを イオン化光源に用いている。これはイオンの生成時間を短 くして質量分解能を高める上でも望ましい。イオン検出の 時間分解能を数 ns 以下にするため、マイクロチャネルプ レートイオン検出器と1GHz前後のサンプリング速度をも つ信号記憶、積算装置を利用している、共鳴励起イオン化 による選択性と感度の向上のため、紫外レーザーをイオン 化光源に用いている、レーザー波長を長くすると選択性が 向上する.一方、レーザー波長を短くすると適用範囲を拡 大できる.現在,加工用のフェムト秒レーザーは,信頼性 が向上し,1年間保守なしに使用できる.中でもファイ バーレーザーは,高出力,高信頼性,低価格の製品が多数 市販されている.

2. 試料導入部とイオン加速電極

開発された質量分析計の試料導入部には、いくつかの工 夫がなされている。以前はノズルから離れた場所で分子 ビームに対して直交するようにレーザーを導入する方式が 一般的であった.しかし、最近ではリペラー部から試料を 導入し, 直後の試料密度が高いところでイオン化する近接 イオン化方式が採用されている。この方法を用いれば感度 を50倍程度改善できる。本方式では、イオン化室や質量 分析計が汚染されていても、ノズルからの清浄なキャリ ヤーガスにより汚染物を排除できるので、分子ビーム中に ある試料分子のみをイオン化できる特徴がある。したがっ て、バックグラウンド信号を低下させることができる。た だし、ノズル近傍ではイオンがキャリヤーガスと衝突して 散乱されるので、レーザーの照射位置は最適値に選ぶ必要 がある.一方,生じたイオンの加速,集束,偏向にはリペ ラー電極、抽出電極、接地電極、アインツェル電極、偏向 電極等が用いられるが、最近ではメッシュを用いない電極 を用いてイオンの透過率を高めることが多い.たとえば、 リングリペラー・ダブルスキマー電極とよばれる方式を用 いると、イオンを効率よく検出器に集束できる。パルス レーザーを用いて瞬時にイオン化する場合には、飛行時間 型質量分析計がよく用いられている。質量分解能を高める には、イオン化位置の幅と初期速度分布の幅を狭くする必 要がある、レーザーイオン化法では、レーザーを集光する ことによりイオン領域の幅を狭くすることができる。しか し、集光し過ぎるとイオン化の体積が減少して感度が低下 するので、実際には最適な集光条件を定める必要がある。 なお、この質量分析計のモジュールは(株)光技術研究所 から市販されている.

3. 応 用 例

開発したレーザーイオン化質量分析計は,すでに多くの 実試料の分析に応用されている.以下,分析例を通して レーザーイオン化質量分析計の特徴を紹介する.

3.1 高出力サブピコ秒レーザーの利用

繰り返し速度が高い高平均出力レーザーを用いると高い 分析感度が得られる.図3は産業用に開発された(株)浜 松ホトニクス製 MOIL-psの第四高調波(258 nm, <1 ps, 20 kHz, 800 mW)を用いてダイオキシン標準試料を分析し

42巻11号(2013)

図3 ダイオキシン混合物の二次元表示データ(4塩素化物 の領域を拡大した結果). tetraCDD:4塩素化ダイオキシ ン, tetraCDF:4塩素化ジベンゾフラン.

た結果である⁷⁾. 図3の横軸はGCの保持時間, すなわち GC から試料が溶出する時間を示す。また、縦軸はイオン の飛行時間と、それを質量電荷比(m/z)に変換した値で ある、通常、イオンの電荷は1なので、質量を直接求める ことができる.この試料には、自然界に存在するダイオキ シンのほか、内標準物質として添加したすべての C 原子 を¹³C原子で置換した同位体が含まれている。ダイオキシ ンは12個のC原子からなるので、その同位体は質量が12 だけ異なる。たとえば、tetraCDFと¹³C-tetraCDFは、前 者が自然界に存在するおもに¹²Cからなる4塩素化ジベン ゾフラン,後者が内標準として添加した¹³C原子からなる 4塩素化ジベンゾフラン(同位体)である。なお、それぞ れのグループが複数のスポットから構成されているのは, 4 塩素化ジベンゾフランの分子内に³⁵Cl と³⁷Cl がほぼ 3:1 の割合で4個含まれ、それらの組み合わせの数だけ同位体 が存在するためである. すなわち, (³⁵Cl₄, ³⁷Cl₀), (³⁵Cl₁, ${}^{37}Cl_3$), $({}^{35}Cl_2, {}^{37}Cl_2)$, $({}^{35}Cl_3, {}^{37}Cl_1)$, $({}^{35}Cl_0, {}^{37}Cl_4)$ の 5 種 類の同位体が観測される。ただし、小さなピークはほとん ど観測できない. なお, 実試料の分析では, 自然界に存在 する¹²Cのダイオキシンと内標準試料として加えた¹³Cを 含むダイオキシンの信号強度比を求めることにより定量分 析する.相対イオン化効率は、ほぼ1であることがわかっ ており、1%以下の精度で分析可能である。ダイオキシン 分析において毒性等量(TEQ)の大部分を占める 2,3,4,7,8pentachlorodibenzofuran に対して, 6 fg の検出限界が得ら れている。チタンサファイアレーザーの第三高調波(267 nm, 100 fs, 1 kHz, 100 mW) を用いた場合より,約1 桁低 い検出限界が得られている。しかし、塩素数が多いダイオ キシンについては、塩素数の増加とともに検出限界が高く

なっており、パルス幅を短縮すれば分析感度がさらに改善 されると考えられる.なお、難燃剤として利用されていた 臭素化ビフェニルエーテル (PBDE)を 100 fs のレーザー パルスを用いてイオン化した場合も臭素原子数の増加によ り検出限界が高くなり、さらにパルス幅が短いレーザーの 利用が望ましいことが示唆されている⁶.

一方,ハロゲンを含まない芳香族化合物は,三重項への 系間交差がほとんど起こらない.したがって,パルス幅が 比較的広くても,このような感度低下が生じない.開発し た装置では,米国環境保護局が定めた16種の多環芳香族 化合物の半数に対して,サブフェムトグラムの検出限界が 得られている⁷⁾.環境分析において最も高感度で信頼性が 高いといわれている二重収束型質量分析計の検出限界は数 fg,(電子イオン化)飛行時間型質量分析計は数10 fg,四 重極型質量分析計は数 pgの検出限界であることを考慮す ると,開発した装置は世界最高レベルの感度をもつことが わかる.

3.2 東日本大震災による環境汚染

東日本大震災では多くの廃棄物や汚染土壌が生じ,それ らを迅速,安価に測定することが求められている.しか し,廃棄物や土壌中には多くの夾雑成分が含まれており, 前処理なしに極微量成分を分析することはできない.前処 理は一般に複雑で長期間を要するので,分析コストが増大 するおもな要因になる.レーザーイオン化法は選択性が高 いので前処理を簡略化できる.そこで,土壌を風乾した後 に簡易前処理する方法が提案されている⁸⁾.すなわち,試 料を無水硫酸ナトリウムとともにステンレス容器に入れて 高速溶媒抽出することにより,抽出操作に要する時間を約 1時間に短縮している.溶液を濃縮した後に市販カラムを 用いて予備分離しているが,自然落下方式を採用している ので多数の試料を同時に処理できる.このような方式を用 いて前処理時間を従来の約10分の1に短縮できることを報 告している.

震災後に東日本地域から採取した試料は,ほとんどが原 油の場合に類似した二次元表示データを示す.これは地震 後に生じた津波による石油タンクの崩壊に起因すると考え られる.しかし,一部の試料では図4のような結果が得ら れ,塩素数を4~9個含む多塩素化ビフェニル(PCB)が 強く観測された(四角の破線は有毒な PCB を示す).な お,それぞれの楕円で示すグループにおいて,横軸方向に は10~20程度の異性体が観測されている.これは塩素原 子の位置が異なる分子が,異なる時間でGC から溶出する ためである.また,縦軸にも多数のスポットが観測される が(この図では解像度が悪く1本の縦線に見える),それ

図4 東日本大震災後に採取した土壌試料の分析結果. イオン化光源としてフェムト秒チタンサファイアレーザーを使用.

は³⁵Clと³⁷Clの組み合わせが異なる同位体が存在するため である. すなわち, 前述のように4塩素体であれば5種類 の同位体が存在する、図4の結果から、毒性等量(TEQ) に換算して 100 pg-TEQ/g を超える値が得られ、再調査が 必要なレベルにある。地震によって PCB 貯蔵施設が流出 したといわれており、その影響によるものと推察される。 一方、多塩素化ダイオキシン、多塩素化ジベンゾフランな どを中心に 50 pg-TEQ/g 以上の値が得られた例も報告さ れている。これは地震後に発生した火災によって生じた可 能性がある。本法は GC/MS に基づく二次元表示データが 得られ、含まれる目的成分および妨害物が一目で確認でき る利点がある。今回の測定結果は、環境省の調査結果と比 較して濃度が数桁高いが、これは試料採取位置の違いによ ると考えられる。すなわち廃棄物が集積されていた海岸線 付近で採取した試料はダイオキシン濃度が高く、廃棄物に よる汚染が懸念される.

3.3 紫外および深紫外レーザーを用いる農薬の分析

人口増大に伴う食糧不足は世界の趨勢である.食糧を増 産するには農薬の使用が不可欠であるが,それによる食品 の汚染が懸念されている.このような農薬を検疫所などで 分析するには,前処理が容易で汚染物質の存在が一目でわ かる方法を用いることが望ましい.レーザーイオン化法は 選択性に優れているだけでなく,二次元表示データから目 的とする農薬や夾雑物をただちに識別できる利点がある. チタンサファイアレーザーの第三高調波を用いて,キュウ リ,トマトなどの食品が分析されている⁹⁰.一度に多数の スポットが観測され,その一部を拡大すると農薬成分が明 瞭に判別できる.本法と(電子イオン化)飛行時間型質量 分析計,トリプルステージ質量分析計の検出限界を比較す

図5 紫外フェムト秒レーザー(267 nm)を用いて効率よく イオン化できない農薬の化学構造式.標準試料として Mix 7,イオン化光源としてフェムト秒チタンサファイアレー ザーを使用.

ると、本法は、ほとんどの化合物に対して 1~2 桁高感度 であることがわかる.従来の四重極質量分析計では測定で きなかった成分が検出できることが報告されている.

しかし、一部の農薬についてはレーザーイオン化法の感 度が低く、検出限界が数100 pgとなる場合もある.図5は そのような化合物の化学構造式である.これらの化合物は いずれも芳香族化合物ではなく、267 nm に吸収バンドを もたないと考えられる.しかし、分子内に二重結合や環構 造をもつので、200 nm 付近には吸収バンドをもつと示唆 される.そこで量子化学計算により励起エネルギーとイオ ン化エネルギーを求めた結果、チタンサファイアレーザー の第四高調波(200 nm)を用いると、このような化合物を 効率よく測定できることが判明した¹⁰⁾.実際に測定を行う と、これらのほとんどはイオン化効率が改善されることが わかった.このようにレーザーの波長を短くすることによ り分析対象を拡大することができる.

以上のようにレーザーイオン化では、レーザー波長の選 択により目的とする試料に最適な条件で分析できる利点が ある. なお、分子内に二重結合をもたない鎖状炭化水素化 合物でも、フェムト秒レーザーを用いると数 10 pg でも非 共鳴イオン化質量分析できる⁹⁾.したがって、一連の鎖状 炭化水素化合物を用いてキャピラリーカラムを校正すれ ば、保持指標が求められている農薬の場合には、標準試料 がなくても帰属が行える.

4. 将来展望

質量分析において分子イオンを観測することができれ ば、ただちに試料分子の分子量を求めることができる.し かし、酸素原子を含むエーテル、アルデヒド、過酸化物な どは、一般に分子イオンを与えにくい化合物として知られ ている.このような問題を解決するため、超短パルス光を 用いるイオン化法が注目されている。たとえば、爆発物の 一種である過酸化アセトンは,通常の電子イオン化では分 子イオンが検出されない.フェムト秒レーザーイオン化の 場合でも、パルス幅が100 fs 程度のときには、分子イオン が基準ピークの数%しか観測されない。しかし、パルス幅 を数10fsまで短縮すると、数10%まで信号が増強され る. 分子の振動周期は数10fs程度であり、このように分 子中の原子がほとんど動かない時間領域でイオン化すると き, 分子イオンが普遍的に生じるか否かは全く未知であ る、しかし、このような実験を行うために紫外超短パルス レーザーを発生させることはもちろん、そのパルス幅を測 定することも容易ではない。筆者の最近の研究では、水素 の四波ラマン混合により 2400~180 nm の波長域において フェムト秒レーザーを発生させている。それらの位相を合 わせれば、極限すなわち1fs以下の光パルスが得られる。 しかし、紫外超短パルス光は空気を伝搬させただけでもパ ルス波形が大きく歪む. したがって、測定場所におけるパ ルス幅を求めること自体が難しい。このような問題を解決 するため、質量分析計を二光子応答素子とするオートコリ レーターを開発してパルス幅を測定している. すなわち, 試料導入部からアセトニトリル等の有機物を質量分析計に 導入し、分子イオンの信号強度が入射光強度の2乗に比例 することを利用して,干渉法によりパルス幅を求めてい る¹¹⁾ このような方法を用いれば、測定場所におけるパル ス幅を求め、ただちにレーザーイオン化質量分析が行える 利点がある、紫外超短パルス光は、有機化合物の外殻電子 の挙動を解明するために必須のツールであり、今後の研究 の展開が期待される。

文 献

- T. Imasaka, K. Tashiro and N. Ishibashi: "Capillary gas chromatograph determination of aniline derivatives by supersonic jet resonance multiphoton ionization mass spectrometry," Anal. Chem., 58 (1986) 3242–3244.
- H. Okudaira, T. Uchimura and T. Imasaka: "A pair of concentric capillaries as an interface for gas chromatography and supersonic jet/multiphoton ionization/mass spectrometry," Rev. Sci. Instrum., 81 (2010) 084102.
- H. Tsukatani, H. Okudaira, O. Shitamichi, T. Uchimura and T. Imasaka: "Selective determination of 2,4-xylenol by gas chromatography/supersonic jet/resonance-enhanced multiphoton ionization/time-of-flight mass spectrometry," Anal. Chem. Acta, 682 (2010) 72–76.
- R. Zimmermann, C. Weickhart, U. Boesl and E. W. Schlang: "Influence of chlorine substituent positions on the molecular structure and the torsional potentials of dichlorinated biphenyls: R2PI spectra of the first singlet transition and Am1 calculations," J. Mol. Struct., **327** (1994) 81–97.
- 5) A. Li, T. Uchimura, Y. Watanabe-Ezoe and T. Imasaka: "Analysis of dioxins by gas chromatography/resonance-enhanced multi-

photon ionization/mass spectrometry using nanosecond and picosecond lasers," Anal. Chem., 83 (2011) 60-66.

- O. Shitamichi, T. Imasaka, T. Uchimura and T. Imasaka: "Multiphoton ionization/mass spectrometry of polybrominated diphenyl ethers," Anal. Method, 3 (2011) 2322–2327.
- 7) T. Matsui, K. Fukazawa, M. Fujimoto and T. Imasaka: "Analysis of persistent organic pollutants at sub-femtogram levels using a high-power picosecond laser in gas chromatography/ multiphoton ionization/time-of-flight mass spectrometry," Anal. Sci., 28 (2012) 445–450.
- Y. Chang and T. Imasaka: "Simple pretreatment procedure combined with gas chromatography/multiphoton ionization/ mass spectrometry for the analysis of dioxins in soil samples obtained after the Töhoku earthquake," Anal. Chem., 85 (2013) 349–354.
- 9) A. Li, T. Imasaka, T. Uchimura and T. Imasaka: "Analysis of pesticides by gas chromatography/multiphoton ionization/ mass spectrometry using a femtosecond laser," Anal. Chim. Acta, **701** (2011) 52–59.
- Y. Hashiguchi, S. Zaitsu and T. Imasaka: "Ionization of pesticides using a far-ultraviolet femtosecond laser in gas chromatography/time-of-flight mass spectrometry," Anal. Bioanal. Chem., 405 (2013) 7053–7059.
- 11) T. Imasaka, T. Okuno and T. Imasaka: "The search for a molecule to measure an autocorrelation trace of the second/third harmonic emission of a Ti:sapphire laser based on two-photon resonant excitation and subsequent one photon ionization," Appl. Phys. B, (2013) 1–7.

(2013年7月8日受理)