# 微小散乱体の空間配置による光波制御

山田 博仁・大寺 康夫

### Control of Lightwave with Coherent Optical Scattering by Nano-Photonic Elements

Hirohito YAMADA and Yasuo OTERA

Unique methods of controlling lightwave with coherent optical scattering by nano-photonic elements were proposed. We describe a method of controlling directivity of light emission, polarization control of lightwave, and a device with guided-mode resonance. Radiation and Polarization conversion characteristics of a tailored array of sub-wavelength dielectric cylinders, and resonance characteristics of sub-wavelength grating-assisted disk resonators are presented.

Key words: lightwave control, coherent optical scattering, nano-photonic element

物体による光の散乱には、表1に示すように散乱体物質 との相互作用に基づいた原子共鳴による非弾性散乱(ラマ ン散乱やブリユアン散乱など)と、散乱体物質との相互作 用のない弾性散乱とがある。弾性散乱の場合、散乱される 光の波長は散乱の前後で等しい。弾性散乱はさらに、散乱 体による光共振を伴う、したがって散乱体のサイズや形状 に強く依存する共鳴散乱と、散乱体での共振を伴わない非 共鳴な散乱とに分けられ、非共鳴の場合はさらに散乱体の サイズと波長との関係によって、ミー散乱やレイリー散乱 に分けられる。本稿で述べる光散乱はこのうち散乱体の共 振を利用するもので、散乱の仕方が散乱体の形状やサイズ に強く依存する.このような光散乱体をナノフォトニック エレメントとよぶことにする.

複数のナノフォトニックエレメントが空間的に規則正し く配置された場合には、さらに興味深い現象がみられる. 図1に示すように、ナノフォトニックエレメントが空間的 にランダムに配置されている場合、光の散乱はインコヒー レントに起きるが、空間的に規則正しく配置されている場 合にはコヒーレントな散乱となり、特定の方向にのみ強く 散乱されたり<sup>1)</sup>、偏波状態が変換されたりすることもある<sup>2)</sup>. 本稿ではそれらの現象について解説し、光デバイスや光回 路などへの応用についても言及する.

## 1. ナノフォトニックエレメント

上に述べたナノフォトニックエレメントに関しては、表 2に示すようなフォトニックナノ構造がすでに知られてお り、このうちのフォトニック結晶やフォトニック分子とよ ばれる構造体はこのようなナノフォトニックエレメントに おける光のコヒーレント散乱を利用するものであるといえ る。例えば、フォトニック結晶デバイスの多くは、屈折率 の多次元ナノ周期構造における光のコヒーレント散乱に よって発現するフォトニックバンドギャップ内に, 点欠陥 や線欠陥を導入し、光共振器や光導波路として機能させる ものである。これと逆の発想で、光が自由に伝搬可能な自 由空間やスラブ導波路内にナノフォトニックエレメントを 配置し、光波のコヒーレント散乱によって光の伝搬を制御 するデバイスも考えられる。これに関しては、2~4章で 紹介する。また、サブ波長周期の回折格子は、特定波長の 入射光に対して導波モード共鳴現象を発現し、反射率がほ ぼ1になるという興味深い現象を呈する。これに関しても 5章で紹介する。

# ナノフォトニックエレメントによる発光体の指向 性制御

ナノフォトニックエレメントによる興味深い現象のひと つとして,発光体の発光指向性の制御がある.電波のアン

東北大学大学院工学研究科(〒980-8579 仙台市青葉区荒巻字青葉 6-6-05) E-mail: yamada@ecei.tohoku.ac.jp

表1 各種光散乱メカニズム.  $d \approx \lambda$  $d \ll \lambda$ サイズ  $\mathcal{M}$ 非共 非共鳴 弾性 レイリー散乱 ミー散乱  $(\lambda_{in} = \lambda_{out})$ 鳴  $\lambda_{in}$ 光共振による 共鳴 光共振による 共 ∕₩  $\mathcal{M}^{\lambda_{out}}_{\boldsymbol{\omega}}$ 嗚 物質による 物質による 物質による共 非弾性 ナノフォトニックエレメントと呼ぶことに  $(\lambda_{in} \neq \lambda_{out})$ ブリユアン散乱 ラマン散乱  $\lambda_{in}$ コンプトン散乱  $\Lambda \Lambda \Lambda$ 鳴



図1 コヒーレント散乱とインコヒーレント散乱.



テナの一種に八木・宇田アンテナがあるが、この原理を光 に対して応用すると,発光の指向性の制御が可能とな る<sup>1)</sup> 図2は, 波長 1550 nm 付近に共振波長を有する誘電 体ロッドから、波長 1550 nm の光が放射される様子を FDTD (finite-difference time-domain) 法で計算したもの である. 孤立した誘電体ロッドからの発光は図2(a) に示 すように等方性となるが、発光体から4分の1波長離れた 位置に、共振波長がわずかに短い(共振周波数がわずかに 高い) 誘電体ロッド(導波器)を配置すると、図2(b) に 示すように導波器の方向に強く放射されるようになる。逆 に,発光体から4分の1波長離れた位置に,共振波長がわ ずかに長い(共振周波数がわずかに低い)誘電体ロッド (反射器)を配置すると、図2(c)に示すように反射器と は反対方向に強く放射されるようになる。これらナノフォ トニックエレメントの数をさらに増やしていくと、図2 (d) ~ (f) に示すようにより鋭い指向性をもった発光が得 られるようにもなる. このように,発光体の光放射パター ンの制御が可能となる。

# 3. ナノフォトニックエレメントによる光導波路出射 ビームの指向性制御

光導波路端からの光出射パターンを制御する方法として は、ビームスポットサイズ変換器などがあるが、ナノフォ トニックエレメントを用いると、コンパクトに出射パター ンを制御することが可能となる。図3は、チャネル光導波 路からスラブ導波路への出射光ビームの伝搬の様子を FDTD 法で計算したものである。チャネル導波路からの出 射光ビームはスラブ導波路内では図3(a)に示すように大 きく広がるが、ナノフォトニックエレメントを用いると、 図3(b), (c) に示すように出射光ビームを鋭くすること



図2 ナノフォトニックエレメントによる発光体の指向性の制御.

ができる.出射ビームのパターンは、ナノフォトニックエ レメントの形やサイズ、位置などに大きく依存し、これら を適切に配置することにより、光ビームを整形したり、導 いたりすることも可能となる.

# 4. ナノフォトニックエレメントによる偏光制御

ナノフォトニックエレメントによって散乱される光波

は、散乱の際に何がしかの位相変化がもたらされる.エレ メントの形状が異方性の場合、位相変化は光波の偏光に依 存する.これを利用することで、エレメントを偏光子や波 長板として機能させることもできる<sup>2)</sup>.図4はエレメント の直径と、エレメントに対して縦横両偏光の位相差の関係 を、FDTD 法で求めた電磁界分布から計算したものであ る.ここでエレメントの長さは700 nm とし、300 nm 角の



図3 ナノフォトニックエレメントによる光導波路出射ビームの制御.



図4 フォトニックエレメントによる偏光制御の例. (a) 電界が紙面に平行 ( $E_t$ ) および垂直 ( $E_l$ ) の両偏光間の位相差, (b)  $E_t$  偏光入射時の電界分布, (c)  $E_l$  偏光入射時の電界分布, PhE はフォトニックエレメントの略.

光導波路から,波長 1.55  $\mu$ m の光を照射するものとした. エレメントの直径が導波路寸法と同程度から2倍程度の範 囲で 0.1 $\pi$  程度の位相差を生じることがわかる.なお,図 に記した数字は、いずれかの偏波に対しエレメントが共振 する点を表わしている.この共振の効果を利用し、さらに エレメントを2個・3個と直列配置することで、偏光面の 回転に必要とされる 0.25~0.5 $\pi$  の位相差も発生できると考 えられる.

#### 5. サブ波長周期回折格子

ディスク共振器やリング共振器などの円形共振器は光導 波路型のレーザーキャビティーや波長選択フィルターなど に多用されている.前者で通常用いられるのは外周に沿っ て伝搬する whispering gallery mode (WGM)であり, ディスク側壁には平坦性が求められる.ここで側壁に意図 的に散乱体を周期配列すると,2つの新しい機能を発現さ せることができる.1つ目は周方向のブラッグ反射であ り、これを利用したレーザーはマイクロギア・レーザー



図5 周期散乱体付きディスク共振器の概念図.周期壁の共 鳴波長に一致した波長の光のみがディスク内に同心円状の共 振モードを形成する.

として知られている<sup>3)</sup>。もう1つは導波モード共鳴現象  $(guided-mode resonance; GMR)^4)$  であり、これは WGM をディスクの中心に向かう同心円状の界分布に変換する作 用を示す. GMR の共鳴波長では、ディスク中心からみた 側壁の反射率は理論上ほぼ 100% に達するので、きわめて 高いQ値をもつ共振器として動作させることができる。 図 5 に示すのは SiO<sub>2</sub> 基板上の Si<sub>3</sub>N<sub>4</sub> 層に形成した GMR 型 ディスク共振器および励振用バス導波路の概念図であ る<sup>5)</sup> WGM の散乱効果を強めるために、ディスク内部に も円孔列を配置するものとしている。ここでバス導波路か らTM モード(電界主成分が基板面に垂直)を入射する と、GMRの共鳴波長において、同心円状の電磁界分布を もつ共振モードが発生する。二次元円柱座標系 FDTD 法 で計算したこの共振モードの磁界分布を図6に示した.共 鳴波長以外では側壁の反射率は低いため、強い界の閉じ込 めは起きない. すなわちこの素子は大面積でありながら, 少数の高 Q 値モードしか存在しえない、「実効的単一モー ド共振器」という、波長選択フィルターに好適な機能を有 しているといえる。

光の波長以下のサイズの微小光散乱体(ナノフォトニッ クエレメント)によるコヒーレント光散乱を用いて,発光



図6 周期散乱体付きディスク共振器の共振モードの磁界分 布. 側壁周期 A は 1 µm, 共振波長は 1.393 µm. この構造の 面内 Q 値の試算値は 100 万以上.

の指向性や光出射パターンの制御, 偏光制御, さらには導 波路共鳴による波長選択的な光の反射といったさまざまな 現象が現れることを示した. これらの現象を利用すれば, 新しい動作原理に基づく光デバイスの実現や, 光回路など に応用できるものと思われる.

#### 文 献

- 山田博仁, 牛田 淳: "フォトニック原子の他励振動による発 光および出射光ビームの指向性制御", 第51回応用物理学関係 連合講演会, 29p-M-17 (2004).
- 2) 井元敦生,大寺康夫,山田博仁:"フォトニックエレメントによる偏波制御機能の検討",電子情報通信学会ソサエティ大会,C-3-34 (2010).
- M. Fujita and T. Baba: "Microgear laser," Appl. Phys. Lett., 80 (2002) 2051–2053.
- S. S. Wang and R. Magnusson: "Theory and applications of guided-mode resonance filters," Appl. Opt., 32 (1993) 2606– 2613.
- S. Iijima, Y. Ohtera and H. Yamada: "High-Q microdisk resonator having sub-wavelength grating on its sidewall," *Conference* on Lasers and Electro-Optics, Pacific Rim (CLEO/PR), WI1-5 (2013).

(2014年6月9日受理)