[OPTICAL REVIEW Vol. 17, No. 3 (2010) 204-209]
© 2010 The Japan Society of Applied Physics

Signal Quality Improvement of Holographic Data Storage Using Adaptive Two-Dimensional Filter

Yosuke TAKAHATA, Yo KONDO, Shuhei YOSHIDA, and Manabu YAMAMOTO

Faculty of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan

(Received September 19, 2009; Accepted March 25, 2010)

Holographic data storage is being widely studied for the purpose of developing next-generation large optical memories. A prospective use of this type of memory is in building image archives in large-scale data centers. In particular, demand for energy conservation at data centers, and therefore for holographic data storage, is growing. In holographic data storage, interference between bits occurs owing to wave aberration in the optical system, shrinkage of the medium, and crosstalk noise from neighboring holograms during multiplex recording; as a result of the interference, the reproduced image deteriorates and the bit error rate (BER) increases. In this study, to reduce the BER in both off-axis-type recording and coaxial-type recording, a two-dimensional finite impulse response (FIR) filter is applied to a reproduced image that has been recorded by angle multiplex recording and shift multiplex recording. First, for the optimization of the FIR filter coefficients, the linear minimum mean square error (LMMSE) method is applied; this method optimizes the coefficients by reducing the BER. Furthermore, for evaluating the optimization performance of the LMMSE method, the optimization performance is compared with that of the real-coded genetic algorithm (RCGA), which has the capability to search a wide range of coefficients. The optimization by the LMMSE method has been found to be excellent for off-axis-type recording but not for coaxial-type recording. It is speculated that this is because of the brightness irregularity in the reproduced image, resulting from crosstalk. On the other hand, a marked reduction in the BER is observed using the RCGA, despite the brightness irregularity. In this study, the effectiveness of the LMMSE method for signals recorded by coaxial-type recording, in which large brightness irregularity is expected, is examined using automatic gain control (AGC). It is found that the application of AGC reduces the BER even in the case of coaxial-type recording.

Key words: holographic data storage, bit error rate, optimization, FIR filter, real-coded genetic algorithm, linear minimum mean squared error, automatic gain control

OPTICAL REVIEW Home Page