光量子計測とその応用

京都大学工学研究科 岡本 亮

2021/10/5 量子情報工学研究会

1. イントロダクション

- 2. NOON状態を用いた計測
 -古典限界を超える位相測定 ⇒ 顕微鏡応用
 -回折限界の克服 ⇒ イメージング応用
- 3. 量子光吸収測定 理論提案と数値解析 -
- 4. まとめ

量子的な光の計測への応用

1970-80年代

重力波検出における測定精度限界に関する議論

⇒スクイーズド光を使った位相測定精度の向上が提案

C. M. Caves Phys. Rev. D, **23**, 1693 (1981).

量子的な光を使うことで、古典的な測定精度限界を超えられることが示された。

量子的な光の計測への応用

PRL 110, 181101 (2013)

PHYSICAL REVIEW LETTERS

week chung 3 MAY 2013

First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory

H. Grote,* K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut) und Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germanv (Received 9 January 2013; published 1 May 2013)

We report on the first long-term application of squeezed vacuum states of light to improve the shotnoise-limited sensitivity of a gravitational-wave observatory. In particular, squeezed vacuum was applied to the German-British detector GEO 600 during a period of three months from June to August 2011, when GEO 600 was performing an observational run together with the French-Italian Virgo detector. In a second period, the squeezing application continued for about 11 months from November 2011 to October 2012. During this time, squeezed vacuum was applied for 90.2% (205.2 days total) of the time that sciencequality data were acquired with GEO 600. A sensitivity increase from squeezed vacuum application was observed broadband above 400 Hz. The time average of gain in sensitivity was 26% (2.0 dB), determined in the frequency band from 3.7 to 4.0 kHz. This corresponds to a factor of 2 increase in the observed volume of the Universe for sources in the kHz region (e.g., supernovae, magnetars). We introduce three new techniques to enable the long-term application of squeezed light, and show that the glitch rate of the detector did not increase from squeezing application. Squeezed vacuum states of light have arrived as a permanent application, capable of increasing the astrophysical reach of gravitational-wave detectors.

15.2 MHz

Squeezed vacuum + 15.2MHz subcarrier field

1064nm

Squeezing phase

RMS estimation

3.6-5.4 kHz

11.6Hz

2 axis piezo actuated mirro

voltage controller

phase shifte

量子的な光の計測への応用

2000年代

「NOON状態」と呼ばれる光子数でもつれ合った光を用いる アプローチの発見

$$\frac{1}{\sqrt{2}} \left(\left| N \right\rangle_A \left| 0 \right\rangle_B + e^{iN\phi} \left| 0 \right\rangle_A \left| N \right\rangle_B \right)$$

N倍の位相差を感じる →位相に敏感な測定が可能

2光子での実現: Edamatsu, Shimizu, & Itoh, PRL, 89, 213601 (2002).

$$\phi = \phi_0 \pm \Delta \phi$$
 $\Delta \phi$ より小さな位相変化は検出できない

古典限界
- 入力:コヒーレント光(平均光子数:*n*)
- 精度の限界:
$$\Delta\phi \approx \frac{1}{\sqrt{n}}$$
 (標準量子限界)

量子限界
- 入力: *n* 光子の量子的な光 (例:NOON状態)
- 精度の限界:
$$\Delta \phi \approx rac{1}{n}$$
 (ハイゼンベルク限界)

Giovannetti, V., Lloyd, S., & Maccone, L. Science, 306, 1330 (2004).

$$\phi = \phi_0 \pm \Delta \phi$$
 $\Delta \phi$ より小さな位相変化は検出できない

Giovannetti, V., Lloyd, S., & Maccone, L. Science, 306, 1330 (2004).

4光子NOON状態を用いた標準量子限界を 超える干渉計

標準量子限界の閾値を超える干渉縞の明瞭度を確認

Nagata, Okamoto, O'Brien, Sasaki, Takeuchi Science **316**, 726 (2007). Okamoto, Hofmann, Nagata, O'Brien, Sasaki, and Takeuchi, NJP **10**, 073033 (2008).

1. イントロダクション

2. NOON状態を用いた計測 -古典限界を超える位相測定 ⇒ 顕微鏡応用 -回折限界の克服 ⇒ イメージング応用

3. 量子光吸収測定 - 理論提案と数値解析 -

4. まとめ

微分干涉顕微鏡

干渉計の原理により測定試料の光路長差の情報をイメージング

* The average total number of photons contributed to these data are set to 920 per position assuming the unity detection efficiency.

今後、より大きな光子数のもつれ状態等により、さらなるSN比向上が期待。 ※N光子NOON状態を用いた場合、SN比が√N倍向上。

NOON状態を用いた回折限界の突破

古典光と比べてN倍の周波数をもった、回折限界を超える干渉縞を実現可能

問題点:各サイトでのN光子測定確率がNの増加に伴い指数的に減少してしまう。

Boto, Kok, Abrams, Braunstein, Williams, and Dowling, Phys. Rev. Lett., **85**, 2733 (2000). Kawabe, Fujiwara, Okamoto, Sasaki, and Takeuchi, Opt. Express, **15**, 14244 (2007).

NOON状態を用いた回折限界の突破

<u>重心測定法:光子の検出地点の重心を計算・記録</u> 全ての光子を利用することができる。

理論提案:Tsang, Phys. Rev. Lett., 102, 253601 (2009).

Rozema, Bateman, Mahler, Okamoto, Feizpour, Hayat, & Steinberg, Phys. Rev. Lett., 112, 223602 (2014).

NOON状態を用いた回折限界の突破

<u>重心測定法の超解像イメージングへの応用(スイスのグループ)</u>

スイスのグループ M. Unternährer, B. Bessire, L. Gasparini, M. Perenzoni, & A. Stefanov, Optica, 5, 1150 (2018).

1. イントロダクション

2. NOON状態を用いた計測 -古典限界を超える位相測定 ⇒ 顕微鏡応用 -回折限界の克服 ⇒ イメージング応用

3. 量子光吸収測定法 -理論提案と数値解析-

4. まとめ

光吸収測定

<u>分光</u> 微量ガス分析

<u>イメージング</u>

非蛍光分子のイメージング

Differential transmission image of a single Atto612Q molecule

M. Celebrano , *et. al.*, Nat. Photonics **5** 95 (2011).

基礎研究から、医療応用まで広く用いられている基盤的な技術。 課題: 微小な吸収の測定は「ショットノイズ限界」により困難。

光のショットノイズ限界(古典限界)

吸収による光子数の変化 $\Delta N \equiv N - N'$ が、光子数ゆらぎ \sqrt{N} よりも小さいと吸収を検知できない。

<u>自発パラメトリック下方変換</u> → エネルギー保存則に従い、光子が対で生成。

ショットノイズ限界を超える計測が可能

E. Jakeman and J. G. Rarity, Opt. Commun. 59 219 (1986).P. R. Tapster, S. F. Seward, and J. G. Rarity, Phys. Rev. A 44, 3266 (1991).

量子吸収測定

2

<u>自発パラメト イメージング</u> → エネルギ-

- ・検出器の損失(検出効率)により、急速に性能が劣化 ・既報告のSN比の向上率は、1.5倍程度。

光子検出器の検出効率によって差分にゆらぎが入ってしまう Q:物理的に光子の差分をとってから光子検出器で検出できないか?

非線形量子干涉計

光子対生成プロセス間の干渉

 $e^{i\phi}|1\rangle_{\rm A}|1\rangle_{\rm B}+|1\rangle_{\rm A}|1\rangle_{\rm B}$ 確率 0 2π π ()位相差 ϕ

非線形量子干涉計

光子対生成プロセス間の干渉

位相差がπの時、光子対が破壊的な干渉で消失 実効的な2光子吸収効果

サンプルの吸収によって対の光子の一方が失われる場合。

吸収されなかった光子が出力で検出される。

出力で検出される光子数から、サンプルでの光の吸収についての 情報を得ることが可能。

※各結晶でモード当たりに生成される光子対数<<1を仮定。
 ※二つ目の結晶での光子対生成量は、感度を最大化するように最適化。

 R. Okamoto, Y. Tokami, & S. Takeuchi, New Journal of Physics, 22, 103016 (2020).

数値計算結果

 $\eta_{\rm A} = \eta_{\rm B} = 1 - 10^{-4}, T = 1 - 10^{-6}$ に設定

R. Okamoto, Y. Tokami, & S. Takeuchi, New Journal of Physics, 22, 103016 (2020).

ハイブリッドアプローチ

サンプルの情報を漏れなく得るため、出力Aにも単一光子検出器を追加。

干渉性が低くても他手法よりも高い感度を得ることが可能。

R. Okamoto, Y. Tokami, & S. Takeuchi, New Journal of Physics, 22, 103016 (2020).

まとめ

►NOON状態を用いた計測

・位相測定の高感度化
 ●重力波検出、(位相を用いる)顕微鏡への応用
 ・イメージングの高解像度化

➡超解像顕微鏡への応用

▶量子光吸収測定

・微弱な吸収を高感度に検知

➡吸収分光や吸収イメージングへの応用

例:光毒性を持つ分子の吸収特性を優しく測定、 蛍光に頼らないイメージング・非蛍光分子の分光。

その他の光量子計測

量子赤外分光

赤外分光を可視のレーザー光と検出器で実現 (a) ^{非線形光学} ^{非線形光学} ^{信号光} ^{結晶1} ^編 ^編 ^{非線形光学} ^{信号光} ^に ^{点晶2} ^{可視光} ^{回視光} ^{回視光}

参照光

Acknowledgements

Lab members (Kyoto university, Takeuchi lab)

Prof. J. L. O'Brien (Bristol University) Prof. H. F. Hofmann (Hiroshima University)

T. Nagata, T. Ono (Kagawa Univ.) M. Fujiwara (Okayama Univ.), U. Tokami

Thank you very much for your attention!