Plasmons and Interband Optical Transitions in Narrow Gap Semiconductors with Fermi Level Outside Band-Gap

Nazim T. Mamedov

Institute of Physics, Azerbaijan National Academy of Sciences, AZ1143 Baku, Azerbaijan *E mail: n.mamedov@physics.ab.az*

Optical determination of the band gap energy and Fermi level position in semiconductors has a long history and dates back to the first studies on Si and Ge. Since then, many studies have proved the effectiveness of the purely optical approach to the materials with concentration of donors or acceptors that leaves Fermi level inside the band gap. Moving Fermi level above the bottom (top) of the conduction (valence) band complicates the situation and requires the knowledge of the effective masses of carriers; i. e. additional information beyond the data provided by optical spectroscopy to obtain the band gap energy.

Especially complicated is the situation with 3D topological insulators which all are narrow band-gap semiconductors with the energy gap inverted due to strong spin-orbital coupling and considered as negative. It is enough to mention that in spite of numerous studies, using infrared transmission and reflection spectroscopy, Shubnikov-de-Haas effect, angle resolved photoemission spectroscopy, Hall effect measurements and extended theoretical calculations, including self-consisted quasi-particle runs, a clear picture of the electronic bands at band gap is still in search even for the most studied classic 3D van der- Waals topological insulators Bi_2Se_3 , Bi_2Te_3 and $Sb_2Te_3/1/$

In this work a new optical plasmon-integrated approach to retrieve key band-gap -related parameters of a narrow band-gap semiconductor with Fermi level outside the band gap is presented.

/1/ N. Mamedov *et.al.*, Spectroscopic Ellipsometry and Infrared Optical Spectroscopy of Plasmons in Classic 3D Topological Insulators, will appear in J. Vacuum Science & Technology (2019).

第一原理計算による TIBr の電子状態解析

First-principles study of defect properties in TlBr

石川 真人¹,中山 隆史¹,脇田 和樹²,沈 用球³,ナジム.マメドフ⁴,小野寺 敏幸⁵

1. 千葉大学理学部 2. 千葉工業大学工学部, 3. 大阪府立大学工学部,

4. アゼルバイジャン科学アカデミー、5. 東北工業大学工学部

Masato Ishikawa¹, Takashi Nakayama² Kazuki Wakita¹, Yong-Gu Shim³,

Nazim Mamedov⁴, Toshiyuki Onodera⁵

1.Department of Physics Chiba University, 2. Faculty of Engineering Chiba Institute of Technology, 3. Faculty of Engineering Osaka Prefecture University, 4. Institute of Physics, Azerbaijan, 5. Faculty of Engineering Tohoku Institute of Technology,

Abstract Thallium bromide (TIBr) is a promising semiconductor for the fabrication of radiation detectors because of its large carrier mobility and high gamma-ray stopping power. And, it is also known that the serious degradation of performance is often observed in TIBr-based detectors during the device operation, probably due to the carrier transport degradation caused by the appearance of some crystal defects. However, the origin of such defects is still unknown at present. In this work, we study electronic properties of defects in TIBr and clarify the origin of degradation, using the first-principles calculations.

1. 背景

TI 系化合物である TIBr の電気的特性はバンドギャップが 2.68eV を示すワイド半導体の性質を持ち、また構成する原子番号が高いため高密度の性質を応用してガンマ線等の X 線検出機の材料として期待されている。[1] しかしながら TIBr 結晶の基礎特性については不明な部分が多く、光学特性の実験結果では、バンドギャップ近傍にブロードな吸収ピークが確認されているが、その発生メカニズムは不明である。そこで我々は第一原理計算を用いて TIBr の電子構造の解析を行った。

2. 結果および考察

TlBr の結晶構造は CsCl 構造(BCC 構造)を示す。計算では格子定数を X,Y,Z 方向に 3 ×3×3 倍に拡張した 54 原子 (Tl=27,Br=27)のモデルを用いてバンド端の吸収スペクトルに変化を示す"欠陥"ついて 3 種類のモデルで計算を行った。結果を以下に示す。(1)結晶欠陥では欠陥周りのダングリングボンドによって伝導帯下端にフラットなバンドが出現するが、吸収スペクトルへの影響は見られない。

(2)残留元素の影響ではII族、V族のドープではDeepLevelを形成する。III族では伝導帯下端に中間バンドを形成するが、吸収スペクトルに影響は見られない。

(3) アンチサイト欠陥の影響ではバンド間の価電子帯・伝導帯共に中間バンドを形成し、 バルクの吸収端より低エネルギー側で吸収が 観られる(Fig.1)。発表ではアンチサイト欠陥 の条件を変更した場合でのバンド構造と吸収 スペクトルの影響についても報告する。

参考文献

1) K Hitomi, M Matsumoto, O Muroi, T Shoji, Y Hiratate. J. Crystal. Growth.225,129(2001).

Theoretical Study of Halide Perovskites for Solar Cell and Optoelectronic Applications

Su-Huai Wei

Beijing Computational Science Research Center, Beijing, China

Halide perovskites such as CH₃NH₃PbI₃ have recently emerged as promising materials for low-cost, high-efficiency solar cells. The efficiency of perovskite-based solar cells has increased rapidly, from 3.8% in 2009 to more than 25% recently by modifying material compositions and engineering cell architectures and defect properties. The emergence of high efficiency perovskite solar cells can be attributed to the intrinsic properties that distinguish them from conventional semiconducting solar cell absorber materials. However, despite the enormous progress of the perovskites in solar cell applications, challenges are still standing in their way to large-scale commercial applications, including their poor long-term stability, which could be partially attributed to the intrinsic thermodynamic instability of CH₃NH₃PbI₃ and related materials, and the toxicity of Pb, currently used in high efficiency halide perovskite based solar cells. Recently, various approaches have been proposed to overcome these bottlenecks, including defect control, alloying, as well as atomic transmutation. In this talk, I will discuss some of our recent theoretical investigations on ordered and disordered halide perovskites to understand their material properties and provide theoretical insights and possible solutions to the usage of halide perovskites for solar cell and other optoelectronic applications.

Effects of alkali-metals in CIGS and related multinary compounds

Shogo Ishizuka Research Center for Photovoltaics, AIST Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 205-8568, Japan

Alkali-metals are widely known to be indispensable elements in enhancing Cu(In,Ga)Se₂ (CIGS) solar cell device performance. To date, the beneficial effects of alkali-metals on not only CIGS, but also on other compound solar cell devices such as Cu_2O^{1} , $Cu_2ZnSnSe_4^{2}$, and also organic-inorganic hybrid perovskite^{3,4)} have been reported. Although the mechanisms behind alkali-effects are still open to discussion, alkali-effects and the related control techniques are attracting attention.

Alkali-effects on CIGS devices were found and reported in the early 1990s⁵⁾, and thus, the research history of the effects of alkali-metals on CIGS is relatively long compared with that of other materials. In this talk, recent developments in alkali-effects control techniques on CIGS are focused upon. Differences in alkali-effects observed with different doping techniques, namely postdeposition treatment (PDT)⁶⁾ and diffusion from substrates⁷⁾ (Fig. 1), and also different effects with various alkali-metal species are discussed. Developments in alkali-doping techniques are key to demonstrate highly-efficient CIGS solar cell devices such as ultra-light weight devices using alkali-free flexible substrates (Fig. 2).

Fig. 1 Schematic of alkali-doping techniques.

Fig. 2 Monolithically integrated flexible CIGS solar cell.

Acknowledgement

The author would like to thank M. Iioka, H. Higuchi, and H. Takahashi for their help with the experiments and technical support. The author also would like to thank N. Taguchi for TEM measurements. This work was supported by JSPS KAKENHI grant number 16K04969, 19K05282 and also supported in part by NEDO and Mitsubishi foundation.

References

- 1) T. Minami et al., Appl. Phys. Lett. 105, 212104 (2014).
- 2) H. Tampo et al., J. Appl. Phys. 122, 023106 (2017).
- 3) J.-P. Correa-Baena et al., Science 363, 627 (2019).
- 4) Z. Tang et al., Sci. Rep. 7, 12183 (2017).
- 5) J. Hedström *et al.*, *Proc.* 23rd *IEEE PVSC* (1993), p.364.
- 6) D. Rudmann et al., Appl. Phys. Lett. 84, 1129 (2004).
- 7) S. Ishizuka et al., J. Appl. Phys. 106, 034908 (2009).

CIS 系薄膜太陽電池技術の進展と今後の展望一高効率化と新たな応用 Recent Progress and Future Prospects of CIS-based Thin-film Solar Cell Technology – High Efficiency and New Applications

平井 義晃, 中村 元志, 山口 幸二, 木本 祥紀, 矢崎 佑翼, 加藤 拓也, 杉本 広紀 出光興産株式会社 次世代技術研究所 厚木リサーチセンター

Recent Progress and Future Prospects of CIS-based Thin-film

Solar Cell Technology – High Efficiency and New Applications, Motoshi Nakamura, Koji Yamaguchi, Yoshinori Kimoto, Yusuke Yasaki,

Takuya Kato, and Hiroki Sugimoto

Atsugi Research Center, Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd.

Abstract In 2018, Solar Frontier K.K., a 100% subsidiary of Idemitsu Kosan Co.,Ltd. achieved record cell efficiency of 23.35% on a 1-cm²-sized CIS-based cell with Zn-based buffer layers. These buffer layers improved $V_{\rm oc}$ loss when compared with the conventional CdS buffer layer, regardless of the bandgap of CIS-based absorbers. This progress must be advantages for new applications in the near future.

Cu(In,Ga)(Se,S)2はバンドギャップ制御が可能で高い光吸収係数を有するため、太陽 電池光吸収層材料に適している。出光興産の 100%子会社であるソーラーフロンティ ア社では 2007 年より CIS 系薄膜太陽電池の商業生産を行っており、これまで 5GW を 超えるモジュールが世界中に設置されている。今後様々な用途展開を見据えた CIS 系 薄膜太陽電池の競争力を高めるために、さらなる変換効率の向上が求められている。

図1に示すように、2018年に我々は1.0cm²サイズのセルで23.35%^[1]の変換効率を 達成している。高効率化の実現には、Cs表面処理及びワイドギャップZn系バッファ 層が重要な役割を果たしている。Cs表面処理は光吸収層のPLライフタイムを改善す ることが確認されており、キャリア再結合の抑制に寄与すると考えられる。さらに、 Zn系バッファ層を適用することで、従来のCdSバッファ層と比較して逆方向飽和電 流が低減し、開放電圧損失抑制を可能としている。

上記の高効率セルは 1.08eV のバンドギャップを有する CIS 系薄膜にて得られてお り、タンデム太陽電池のボトム層としても適している。薄膜材料からなるトップ層と 組み合わせることで、変換効率が高くフレキシブル性や軽量性などの特徴を有するオ ール薄膜タンデム太陽電池の実現が可能となる。

本発表では、弊社の CIS 系薄膜太陽電池の高効率化に関する進展とともに、今後の 展望について報告する。

謝辞

本研究は国立研究開発法人新エネルギー・産 業技術総合開発機構(NEDO)との共同研究 によって実施されたものである。関係各位に 感謝する。

参考文献

[1] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato and H. Sugimoto, IEEE Journal of Photovoltaics, p1 (2019).

Fig. 1 I-V curve of new record cell with an aperture efficiency of 23.35% certified by AIST.

Metastable effect on heavy alkali-metal treated CIGS solar cell

Research Center for Science and Technology, Tokyo Univ. of Science Ishwor Khatri, Tzu Ying-Lin, Mutsumi Sugiyama, Tokio Nakada

Abstract Heat-light soaking (HLS) effect on KF- and CsF- treated CIGS thin-film of different CGI and GGI ratios is investigated. Alkali treatment with Se vapor and higher CGI thin films shows improved V_{OC} after HLS. These results are inconsistent with the traditionally established metastable effect due to the V_{Cu} - V_{Se} divacancy complex.

1. Introduction: Metastable effect on CIGS thin-film under light illumination or applied bias voltage has been appeared from earlier¹), which was described due to the change in vacancy complex²). Both the positive and negative effects due to this metastability behavior on solar cell performance have been reported. Recently, heavy-alkali metals (K, Rb and Cs) treatment has been a hot topic to improve the cell efficiency. An existence of a new layer (or composition) of alkali-metal has also been observed at the surface. In such solar cells, HLS has guaranteed the improvement in V_{oc}. The role of new layer and the effect of alkali metals in the recent device structure during HLS have not been studied. Therefore, here we analyzed the effect of CGI and selenium vapor during alkali-metal treatment to understand the metastability on CIGS solar cells due to the V_{Cu}-V_{Se} vacancy.

2. Experimental Methods: CIGS solar cells were fabricated as described previously³). Heavy alkali metals such as KF and CsF were deposited at the surface of the CIGS thin-film to improve the device performance. Metastable behavior of the solar cells was investigated for HLS or HBS treatments.

3. Results and discussion:

As seen in Fig. 1, the improved Voc of CsF-treated CIGS solar cells increased with

increasing CGI ratio, which contrasts with KF-treated solar cells. The difference in atomic radii and diffusion velocities of Na, K and Cs atoms might have a major influence for the result. K atoms diffuse more efficiently in CIGS bulk region than that of Cs atoms during PDT. HLS, on the other hand, redistribute alkali metals more effectively in CsF-treated solar cells, thereby, varying the HLS result. Suppression of V_{Cu} and V_{Se} (data not shown here) in the thin-film by increasing CGI ratio and performing PDT in Se vapor did not mitigate V_{OC} improvement. These results suggest that metastability of CIGS solar cells due to the V_{Cu} -V_{Se} divacancy complex itself

cannot account for the total beneficial effect of HLS in the heavy alkali-metal treated CIGS solar cells. The details will be presented in the meeting.

References:

1)M. Igalson and H.W. Schock, J. Appl. Phys., 80, 5765 (1996).

- 2)S. Lany and A. Zunger, J. Appl. Phys., 100, 113725 (2006).
- 3)I. Khatri, J. Matsuura, M. Sugiyama and T. Nakada, Prog. Photovoltaic, 27, 22 (2019).

III-V high efficiency solar cells and their applications

Shiro Uchida¹, Shulong Lu²,

¹Chiba Institute of Technology, Japan

²Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, China

Abstract

Two novel technologies to enhance the efficiencies in III-V solar cells are demonstrated. One is the roomtemperature wafer bonding which interface has a role of a tunnel junction, which enabled the fabrication of an InGaP/GaAs//InGaAsP/InGaAs four-junction solar cell with 42.0% efficiency. The other is the optical wireless power transmission technology using a laser beaming technology to a solar cell, which also offered the higher efficiencies over 50.0%.

I. Multi-junction solar cells for CPV

InGaP/GaAs//InGaAsP/InGaAs four-junction (4J) solar cells grown by molecular beam epitaxy (MBE) were demonstrated. Two epitaxial wafers based on GaAs and InP substrates with different lattice constants were bonded by the novel room-temperature wafer bonding technology, which enabled to reduce the electrical resistances and minimize the optical transmission loss. The lowest bond resistance of 2.5×10^{-5} Ohm cm², ever reported for a GaAs/InP wafer bond, was achieved [1]. This lowest resistance was due to the specific combination between p⁺-GaAs layer and n⁺-InP layer and the room-temperature wafer bonding with an ion-beam. The I-V characteristics of the p⁺-GaAs/ n⁺-InP bonding showed the linearity up to 10 A/cm² like a tunnel junction. We estimated that it was due to the complex combination of a tunnel current and a trap-assisted current. As a result, an efficiency of 42 % at 230 suns of the four-junction solar cell fabricated by room-temperature wafer bonding was obtained as shown in a Fig.1.

II. Single-junction solar cells for optical wireless power transmission (OWPT)

OWPT is expected to be higher-power and longer distance transmission technology compared to a conventional electromagnetic wireless power transmission. The power conversion efficiencies of single-junction GaAs solar cells with irradiation of laser beams from laser diode [2] were investigated.

Conversion efficiencies were calculated by dividing the measured P_{max} (= $I_{max}V_{max}$) by the irradiated laser beam power. We used the GaAs cells with the efficiency of 25.9% under AM1.5G 1-sun. To improve an efficiency of GaAs cell, we changed the shaded area of the grid fingers from 1% to 5%. The GaAs solar cell with 5% grid kept a relative higher efficiency over 40.0% at a laser input power of near 1W, as shown in Fig. 2. As a result, efficiency of GaAs solar cell was improved up to 52.7% at the laser power of 4-suns. The efficiencies of GaAs solar cells in this system will be furthermore improved by introducing the optimum grid finger structures and anti-reflecting coatings.

Figure.1 Conversion efficiency of 4J solar cell as a function of concentration

Figure.2 Efficiencies of GaAs solar cells as a function of laser input power

REFERENCES

- [1] S. Uchida, et al. Appl. Phys. Express. 7, 112301(2014).
- [2] R. Jomen, et al. Jpn. J. Appl. Phys 57, 08RD12 (2018).

Optical properties of surface modified Si-based multilayer structures

A.H. Bayramov

Institute of Physics, Azerbaijan National Academy of Sciences. H. Javid 131, Az 1143 Baku, Azerbaijan

Noticeable metallization of silicon thin layers on insulator (SOI) with surface-grating has recently been disclosed and accounted for the increased number of conduction electrons due to depression of the occupied quantum states in these systems [1, 2]. It is important to mention that above increase in conduction electron concentration, or so- called geometry-induced doping (G-doping) results from re-arrangement in electron eigenstates. In other words, the effect of G-doping on optical transitions is expected in some region above the energy gap of a semiconductor with surface-grating.

In this work we use photoluminescence and spectroscopic ellipsometry to track down the effect of G-doping on optical transitions and interband density of states in thin surface-grated layer (SG-layer) of a silicon on insulator (SOI). The grating period was below the wavelength of the probing light and though higher but yet comparable with electron de Broglie wavelength. The last remark is important since G-doping takes place in such cases as well, according to the experimental observations [3].

A grating was fabricated in the Si device layer of an SOI wafer. For a device layer thickness in the range of 60-100 nm, the SG line width was 150 nm and the indent depth was 10-30 nm. In line with expectations, observed from surface-grating, the high energy broad emission band with partly resolved and almost equidistant peaks is indicative of the irradiative transitions from electronic eigenstates. Moreover, the position of emission band depends on excitation wavelength. Photoluminescence spectra of the SG layers are discussed in terms of G-doping theory, assuming that peaks in the PL spectrum correspond to transitions, related to energy levels in the surface-grating quantum well.

We have ellipsometrically studied Si/SiO₂ /SOI structures for the cases when SG is absent and present in the top Si layer. We have managed to retrieve dielectric function of the top Si layer in both cases and have shown that presence of SG in this layer leads to dramatic transformation of the dielectric function due to metallization induced by G-doping. The retrieved results are consistent with the results obtained for resistivity and photoluminescence on similar structures.

References

- 1) A. Tavkhelidze, Physica E 60, 4 (2014).
- 2) D. Kakulia, A. Tavkhelidze, V. Gogoberidze, M. Mebonia, Physica E 78, 49 (2016).
- 3) A. Tavkhelidze, L. Jangidze, M. Mebonia, G. Skhiladze, D. Ursutiu, C. Samoila, Z. Taliashvili and L. Nadaraia, Energy Procedia 92, 896 (2016).
- 4) N. Mamedov, A. Tavkhelidze, A. Bayramov, K. Akhmedova, Y. Aliyeva, G. Eyyubov, L. Jangidze, and G. Skhiladze, Phys. Status Solidi C 14, 1700092 (2017).

同時蒸着法により堆積した Cu₂(Sn,Ge)S₃ 薄膜の異相と欠陥

Defect and secondary phase of Cu₂(Sn,Ge)S₃ thin films deposited by co-evaporation

金井 綾香¹, 荒木 秀明², 杉山 睦¹

 東京理科大学 理工学部 2. 長岡工業高等専門学校 物質工学科 Ayaka Kanai¹, Hideaki Araki², Mutsumi Sugiyama¹
 Faculty of Science and Technology, Tokyo University of Science

2. National Institute of Technology, Nagaoka College

Abstract The sulfurization effect of $Cu_2(Sn_{1-x},Ge_x)S_3$ (CTGS) thin films deposited by low-temperature co-evaporation was investigated. The defect properties of CTGS films before and after sulfurization were estimated using photoluminescence and Raman spectroscopy.

1. はじめに

Cu₂SnS₃-Cu₂GeS₃固溶体である Cu₂Sn_{1-x}Ge_xS₃(CTGS)は、Ge/(Sn+Ge)組成比を変化さ せることにより、禁制帯幅を 0.9-1.5eV まで制御可能なことから、次世代型太陽電池 の光吸収層材料として注目されている。本研究では、組成傾斜 CTGS 薄膜太陽電池の 実現に向けて、低温製膜における CTGS 薄膜の結晶品質や異相、欠陥の調査及びそれ らの薄膜に対する硫化プロセス効果について検討を行った。

2. 実験方法

多元同時蒸着法により、基板温度 300℃、堆積速度 0.14~0.28 nm/sec 条件下におい て CTGS 薄膜を Mo/SLG 及び SLG 基板上にそれぞれ堆積した。この際、CTGS にお ける Ge/(Sn+Ge): x 組成を変化させた薄膜も同様に堆積した¹⁾。その後、これらの薄 膜に対し、到達温度 600℃、保持時間 10 分の条件下で硫化処理を行った。その後、硫 化前後の試料に対し、EPMA、XRD、Raman、PL 等の測定をそれぞれ行った。

3. 結果および考察

Fig. 1 に硫化前後の CTGS 薄膜 (x=0.1) における 室温の PL スペクトルを示す。硫化前の CTGS 薄膜 は発光が観察されなかったが、硫化処理を行うこと により、1.03 eV 付近で発光することが観察された。 これは硫化を行うことにより、非輻射再結合の数が 大幅に減少したことを示唆する。

謝辞

本研究の一部は、(公財) 高橋産業経済研究財団及 び JSPS 科研費 JP19H02663 及び私立大学研究ブラ ンディング事業、東京理科大学総合研究院スペー ス・コロニー研究センター及び太陽光発電技術研究 部門の援助を受けた。

Fig. 1 PL spectra of as-deposited and sulfurized CTGS films.

参考文献

1) Our group, Jpn. J. Appl. Phys. doi.org/10.7567/1347-4065/ab4d04.

インテリジェントグリーンハウス応用に向けた VO2薄膜堆積及び温度変化特性評価

Investigation of RF sputter VO₂ on the glass substrate for the intelligent green house

金 冑男^{1,2}, 江尻 拓斗¹, 中田 勇利¹, 杉山 睦^{1,2} 1. 東京理科大学 理工学部, 2. 東京理科大学 総合研究院 Joonam Kim^{1,2}, Ejiri Takuto¹, Yuri Nakada¹, Mutsumi Sugiyama^{1,2} 1. Tokyo University of Science, Faculty of Science and Technology 2. Tokyo University of Science, Research Institute Science and Technology

Abstract RF sputtered VO_2 thin film was directly deposited on the soda lime glass for intelligent green house. The dependence of crystallinity with RF power, ambient gas and thermochromic characteristic of the VO_2 thin film will be presented in detail.

1.はじめに

VO₂は相転移により、室温では赤外光を透過し、転移温度(68℃)以上では赤外光を 遮断する特性を有する機能性酸化物材料である^[1]。この特性を用いて自律的に赤外光 を制御し、室内の温度を一定に保つ機能の付加が期待できる。本研究ではインテリ ジェントグリーンハウス実現に向け、ガラス上に VO₂ 薄膜を直接堆積した。成膜条 件による結晶性の変化や温度による光学特性等の検討を行った。

2. 実験方法

VO₂ 薄膜は RF スパッタを用いてソーダライムガラス(SLG)基板に成膜した。成膜 条件は酸素濃度(4.8%)、圧力(0.3 Pa)、RF 出力(100~180 W)、基板温度を(400℃)とし た。薄膜の評価は XRD や XPS による結晶の変化と共に、温度の変化による赤外光領 域の透過率の測定を行った。

3. 結果および考察

図1にSLG 基板に直接堆積した VO2 薄膜の RFパワーによるXRDパターンの変化を示す。 100Wでは VO2(011)を確認したが、150W 以上 では VO2(100)の成長を確認した。結晶性の向 上のため、シード層や成膜後の熱処理等が報 告されているが、本研究ではスパッタ成膜の みで良い結晶性を持つ VO2 薄膜を得ることが できた。温度による光学特性等の詳細は当日 報告する。

謝辞 本研究は、文科省私立大学研究ブランディング事業、東京理科大学総合研究院 スペース・コロニー研究センターの支援によって行われた。

参考文献

[1] D. P. Zhang, et al., Journal of Alloys Compounds, 659, 198 (2016).

犠牲層を用いた CIGS 太陽電池のリフトオフ技術の開発

Development of lift-off method for CIGS solar cell using sacrificial layers 佐々木 亮一, 中田 和吉, 山田 明 東京工業大学工学院 Ryoichi Sasaki, Kazuyoshi Nakada, Akira Yamada

Tokyo Institute of Technology, Department of Electrical & Electronic Engineering

Abstract In this work, we will develop a method to lift off CIGS solar cells from glass substrates. ZnO layer is formed as a sacrificial layer between the glass substrate and the Mo layer that is the back electrode of the CIGS solar cell. The CIGS solar cell is lifted off from the glass substrate by etching only the ZnO layer in an acetic acid. In this study, we will report that the Mo layer is lifted off from the glass substrate in acetic acid for a sample with Mo/ZnO/SLG structure.

1. はじめに

近年, Cu(In,Ga)Se₂(CIGS)薄膜太陽電池のさらなる活用のため, 軽量化を目指し, 太陽電池をガラスなどの基板からリフトオフする手法について研究されている。従来の研究では, 太陽電池を基板から引きはがす手法などが考えられている¹⁾。本研究では, CIGS 太陽電池の裏面電極となる Mo 層とガラス基板の間に犠牲層を作製し, その犠牲層をエッチングすることにより太陽電池をリフトオフする手法を考案した。

2. 実験方法

Al/ZnO/CdS/CIGS/Mo/SLG 構 造を有する CIGS 太陽電池につ いてリフトオフ技術を開発す ることを目的に,始めに裏面電 極となる Mo をリフトオフする ことを目標とした。そこで ZnO を犠牲層として Mo/ZnO/SLG構 造を作製し,ガラス基板からの

Mo 電極の剥離を試みた。ZnO は MOCVD により SLG 上に製膜し, その上に Mo をス パッタで製膜した。作製されたサンプルについて 5%の酢酸溶液中に浸けて ZnO 層の みを溶かすことで Mo 膜を SLG からリフトオフした。

3. 結果および考察

作製したサンプルについて酢酸溶液中でSLGからMo膜が剥離することを確認した。 このとき Mo膜のみの強度ではSLGからの剥離とともに Mo膜は薄片化した。そこで サンプルの Mo膜上にエポキシ樹脂を塗布することで Mo膜の強度を高めた。その結 果, Moが膜として剥離できることを確認した。

参考文献

1) T. Minemoto, Y. Abe, T. Anegawa, S. Osada and H. Takamura, Jpn. J. Appl. Phys. 49 04DP06 (2010).

CIGS2/CIGSe2 タンデム太陽電池のデバイス解析

Device analysis of CIGS₂ / CIGSe₂ tandem solar cell

雷 宇晨,中田 和吉,山田 明 東工大工学院

Ushin Rai, Kazuyoshi Nakada, Akira Yamada Dept. of Electrical and Electronic Engineering, Tokyo Tech

Abstract To perform the calculation of $Cu(In,Ga)S_2 / Cu(In,Ga)Se_2$ tandem-type solar cells, we introduced a recombination layer between the top and bottom cell. We have successfully calculated the cell performance by optimizing the recombination layer. It was found that an efficiency of 36.6% can be obtained with a bottom-cell bandgap of 1.1 eV and a top-cell bandgap of 1.8 eV.

1. はじめに

近年太陽電池の開発が進んでおり、単接合太陽電池では理論効率に近い変換効率が 得られている。そのため更なる高効率化に向けた多接合太陽電池が注目されている。 本研究では材料の組成比制御によりバンドギャップが可変である Cu(In,Ga)S₂ 太陽電 池(トップセル)とCu(In,Ga)Se₂太陽電池(ボトムセル)とを組み合わせた2端子タンデム 太陽電池に着目し、その変換効果を求めた。

2. 実験方法

シミュレーション上でタンデム太陽 電池を計算する際、トップセルとボトム セルの界面での電流の連続性が問題と なる。そこで再結合界面に欠陥密度が 10^{22} cm⁻³,厚さが4 nmの仮想的な再結 合層(x-layer)を挿入した^{1,2)}。これによ り、トンネル再結合を模擬することが可 能となり、2 層タンデム構造を直接計算 することが可能となった。計算には AFORS-HET v2.5 を用いた³⁾。

3. 結果および考察

Fig. 1 に CIGS₂/CIGS₂タンデム太陽電池のボトムセルとトップセルのバンドギャップに対する変換効率を示す。ボトムセルが 1.1 eV、トップセルが 1.8 eV のとき最大変 換効率 36.6% (Voc=1.84 V, Jsc=23.7 mA/cm²) が得られることが示された。

謝辞

デバイス解析には AFORS-HET v2.5 を使用した,関係各位に感謝する。

参考文献

A. Nakanishi, Y. Takiguchi, and S. Miyajima, Phis. Status Solidi(a), **213**, 7 (2016)
 I.A. Yunaz, K. Sriprapha, S. Hiza, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., **46**, 1398 (2007).

3) AFORS-HET (www.helmholtz-berlin.de/forschung/oe/ee/si-pv/projekte/asicsi/afors-het)

ゾルゲル硫化法を用いた Mo 基板上における Cu₂Sn_{1-x}Ge_xS₃ 薄膜の作製 Preparation of Cu₂Sn_{1-x}Ge_xS₃ thin films on Mo substrates by sol-gel sulfurization method

乙川 大樹, 田中 久仁彦 長岡技術科学大学 Daiki Otogawa, Kunihiko Tanaka Nagaoka University of Technology Email : tanaka@vos.nagaokaut.ac.jp

Abstract Preparation of Cu₂Sn_{1-x}Ge_xS₃ (CTGS) thin films on Mo substrates by sol-gel sulfurization method was investigated. To prevent degradation of a Mo layer, Cu-Sn low concentration solution was coated on the Mo layer, after then Cu-Sn-Ge high concentration solution was coated. The precursor was sulfurized in H₂S (3%) + N₂ atmosphere. XRD patterns of deposited films showed a peak between Cu₂SnS₃ and Cu₂GeS₃.

1. はじめに

Cu₂SnS₃(CTS)薄膜太陽電池は安価かつ豊富に存在する元素で構成されており近年関 心が高まっている.また,CTSのSnの一部をGeで置換したCu₂Sn_{1-x}Ge_xS₃(CTGS)は その添加量 x によってバンドギャップを調整できることが報告されている.¹⁾ これま で本研究室では,CTGS 薄膜の低コストでの堆積を目標とし,ゾルゲル・硫化法によ る成膜を試みてきた.ガラス基板上へのCTGS 薄膜の堆積には成功しているものの, 太陽電池下部電極となる Mo 薄膜上へ堆積させると Mo が劣化し CTGS 薄膜の堆積が できないことが分かった.そこで,本研究では Mo 薄膜上へのゾルゲル・硫化法によ る CTGS 薄膜堆積法の検討を行った.

2. 実験方法

Moの劣化を防ぐために低濃度でCu, Sn,を含む溶液とCTGS薄膜形成のためにCu, Sn, Geを含む溶液を作製した.スピンコート法によって,始めに低濃度のCu, Sn,溶液を Mo薄膜上に塗布した後,Cu, Sn, Geを含む溶液を塗布した.その後,硫化水素を含む 雰囲気下で加熱処理を行った.硫化は二段階に分けて行った.一段階目の硫化は 10°C/min, 60 min, 200°C,二段階目の硫化は

10°C/min, 60 min, 200°C, 二段階日の航化は 500~600°C/min, 5 min, 500~600°C で行った. 作製したサンプルは XRD, EDX, EPMA によ り解析した.

3. 結果および考察

参考文献

Figure1 に XRD の結果を示す. 高温になる ほどピークが強くなり CTS 寄りにシフトし ている. これは高温になるほど CTGS の成長 が進む一方で Ge が抜けてしまっているため であると推測する. また, CTS のピークから のシフト量が約 0.3° であることから文献と の比較の結果 x = 0.3 と推定した.²⁾

1) H. Araki, M. Yamano, G. Nishida, A. Takeuchi, N. Aihara, K. Tanaka, Synthesis and characterization of Cu₂Sn_{1-x}Ge_xS₃, Phys. Status Solidi C **14** (2017) 1600199.

2) R. Fujita, N. Saito, K. Kosugi, K. Tanaka, Preparation of Cu₂Sn_{1-x}Ge_xS₃ bulk single crystals by chemical vapor transport with iodine, Journal of Crystal Growth **498** (2018) 258–262.

発光観測による Cu₂Sn_{1-x}Si_xS₃の Cu/IV 族比依存の検討 Study on Cu/IV ratio dependence of Cu₂Sn_{1-x}Si_xS₃ by luminescence observation

○塚目達也¹ 田中 久仁彦¹ 長岡技術科学大学 電気電子情報工学専攻¹ [○]Tatsuya Tsukame¹, Kunihiko Tanaka¹ Nagaoka Univ. Tech. Dep. of Electrical, Electronics and Information Eng.¹

Abstract

 $Cu_2Sn_{1-x}Si_xS_3$ (CTSiS) is a potential material for cost effective and non-toxic absorber in thin films solar cells. However, basic physical properties of CTSiS have not been fully investigated. Therefore, Polycrystaline CTSiS was grown by solid state reaction, and observed Photo luminescence.

1.はじめに

Cu2Sn1-xGexS3(CTGS), Cu2Sn1-xSixS3(CTSiS)は無毒な汎用元素から構成された化合物で あり、太陽電池の光吸収層として注目されている. CTGS, CTSiS は、Cu2SnS3(CTS) のSnの一部をGe, Si に置換することで単接合太陽電池に適している 1.4 eV のバンド ギャップを達成できる. CTGS 太陽電池は最高発電効率 6.7%が報告されているが^[1], Ge は高価なため、代わりにSi を用いた CTSiS の方が元素戦略的に優れている. しか し、CTSiS は高品質な薄膜が作製されておらず、基礎物性も十分に調べられていない. そこで、本研究では CTSiS 多結晶を作製し、フォトルミネッセンス(PL)観測を行い、 Cu/IV 族比依存の検討を行った.

2.実験方法

観測試料 CTSiS は Cu, Sn, Si, S を混合し加圧成型した後, 固相成長により作製した. 試料は Cu/IV 族比が Cu-poor, Cu-stoichiometric, Cu-rich となるよう目指した. 仕込み組成比は Si/(Sn+Si) = 0.6, S/(Cu+IV) = 1.0 を共通として, Cu/IV = 1.55, 1.60, 1.65 である. EPMA, XRD, 拡散反射測定で評価した. PL 観測では, 励起光源に LD(波長:650 nm)を用い, 試料温度依存性並びに励起強度依存性を調べた. なお, PL は焦点距離 750 mm のポリクロメータで分光し, InGaAs-CCD で検出した.

3.結果および考察

XRD 測定で観測されたメインピークは CTS と Cu₂SiS₃の間にあり、CTSiS が作製 できたと考えている. EPMA による組成分析結

果は Cu-poor 条件が Cu/(Sn+Si) = 1.83, Si/(Sn+Si) = 0.63 S/(Cu+IV) = 0.60. Cu-stoichiometric 条件が Cu/(Sn+Si) = 2.09, Si/(Sn+Si) = 0.66, S/(Cu+IV) = 0.60, Cu-rich 条件 3^{3} Cu/(Sn+Si) = 2.18, Si/(Sn+Si) = 0.58, S/(Cu+IV) = 0.67 となった. Fig. 1 に試料温度 6 K, 励起 強度 37.8 W/cm² における各試料の PL の励起強 度依存性を示す.励起子発光に起因すると考え る発光は観測されず, 0.8-1.3 eV 付近に深い不 純物準位に対応する発光スペクトルが観測さ れた. 各条件で発光スペクトルは 0.92, 1.04, 1.14 eV 付近の 3 つのピークに分離され, Cu-poor で高エネルギー側, Cu-rich で低エネル ギー側の発光が強くなった.

Fig. 1 PL spectra of $Cu_2Sn_{1-x}Si_xS_3$.

参考文献

[1] M. Umehara et al. Appl. Phys. Express **9** 072301(2016).

同時蒸着法を用いた Cu₂GeS₃ 薄膜太陽電池の作製 Fabrication of Cu₂GeS₃ thin-film solar cells from co-evaporated films

大橋 亮太¹, 赤木 洋二², 荒木 秀明¹ 1.長岡工業高等専門学校, 2.都城工業高等専門学校 Ryota Ohashi¹, Yoji Akaki², Hideaki Araki¹ 1. National Institute of Technology, Nagaoka College, 2. National Institute of Technology, Miyakonojo College

Abstract Cu₂GeS₃ (CGS) thin films were produced by the co-evaporation of Cu, Ge, and cracked sulfur, followed by annealing. The films were then used to fabricate photovoltaic cells with the structure glass/Mo/CGS/CdS/ZnO:Al/Al.

1. はじめに Cu₂GeS₃(CGS)は, In, Ga, Se などを含まず地殻中に豊富で無毒な元素で 構成され,バンドギャップ Eg=1.5-1.6 eV¹⁾であることから太陽電池材料として注目さ れるが, CGS 薄膜を用いた薄膜太陽電池の最高変換効率は 2.67%²⁾に留まっており, 更なる変換効率の向上が望まれる。本研究では,この CGS 薄膜を同時蒸着法により 作製し,その後,熱処理(硫化)することで結晶性を向上させ,得られた薄膜を用いて 太陽電池素子の作製を試みた。

2. 実験方法 Eagle XG/Mo 上に同時蒸着装置を用いて基板温度 300℃にて Cu, Ge, S を 3 時間, 成膜した。このとき S 源の温度は 150 とし, 800 で熱クラッキングした。また, Cu セルの温度は 1060℃に固定とし, Ge の蒸発源温度を変えることで Cu/Ge 組成比を変化 させた。その後,赤外線加熱炉で100 mg の硫黄と共に 25℃/min で昇温し, 600℃で 10min 保持することで熱処理を行った。得られた試料を光吸収層として Eagle XG/Mo/CGS /CdS/ZnO:Al/Al 構造の太陽電池素子を形成した。

3. 結果および考察

Fig.1 に同時蒸着で得られた CGS 薄膜に対する熱処理(硫化)前後のラマンスペクトル

を示す。熱処理を行うことに よりシャープなピークとなり 結晶性の向上が確認されたが, 得られた薄膜を用いて作製し た太陽電池素子は僅かな光起 電力しか示さなかった。これ は Ge 成分の再蒸発により Cu/Ge 比が著しく増加したた めと考えられる。

Fig.1 Raman spectra of the as-deposited and annealed thin films.

謝辞

本研究の同時蒸着装置を用いた Cu₂GeS₃薄膜の成膜について,東京理科大 金井綾香 氏より, ご指導いただきました。感謝申し上げます。また,本研究の一部は,高橋産業経済研究財団 及び JSPS 科研費 JP19H02663 の助成により実施されました。また,分析は長岡高専オープン ソリューションセンターで実施されました。

参考文献

1) H. Araki et al., J. Appl. Phys. 53 (2014) 05SW10.

2) X. Jin et al., Sol. Energy Mater. Sol. Cells, 160 (2017) 319.

高温硫化を用いた Cu2SnS3 薄膜太陽電池の作製

Fabrication of Cu₂SnS₃ thin-films solar cells via sulfurization at high temperatures

渡邉奏汰¹, 赤木洋二², 山口利幸³, 中村重之⁴, 瀬戸 悟⁵, 荒木秀明¹ 1.長岡高専, 2.都城高専, 3.和歌山高専, 4.津山高専, 5.石川高専

Kanata Watanabe¹, Yoji Akaki², Toshiyuki Yamaguchi³, Shigeyuki Nakamura⁴,

Satoru Seto⁵, and Hideaki Araki¹

 National Institute of Technology, Nagaoka College, 2. National Institute of Technology, Miyakonojo College, 3. National Institute of Technology, Wakayama College, 4. National Institute of Technology, Tsuyama College, 5. National Institute of Technology, Ishikawa College

Abstract Cu₂SnS₃ (CTS) thin-films were prepared by sulfurization at high temperatures on a quartz substrate with a softening point higher than that of soda lime glass. CTS-based solar cells were also successfully fabricated using the obtained thin films, and the crystal growth of the films was observed with increasing sulfurization temperature. The solar cell comprising a CTS thin film with a sulfurization temperature of 600°C exhibited the optimum performance among the cells examined.

1. はじめに

希少元素や有毒元素 In, Se を含まない Cu2SnS₃ (CTS)は, NaF による Na 添加を用い て 4%を超える変換効率 ^{1,2)}が報告されている。CTS 太陽電池はソーダライムガラス (SLG)基板上に作製されることが多いが, SLG は軟化点が低いため,より高温の 600℃ 以上での硫化による高効率化の検討は殆ど行われていない。硫化温度 500℃では cubic 相が観察され,575℃では monoclinic 相が主として形成され,太陽電池特性が向上す るという報告がある³⁾。そこで本研究では SiO2 基板を用いて,SiO2/ Mo 上に作製した Sn/Cuプリカーサに NaF を積層することで Na 添加を行い 570~700℃の硫化温度でCTS 薄膜を作製し、それらを用いた太陽電池セルの作製を試みた。

2. 実験方法

SiO2 基板上に DC スパッタで Mo を成膜し, その上に電子線蒸着により Sn/Cu 積層 プリカーサを作製した。その後, NaF 100 mg を真空蒸着し, 石英ガラス容器に 100 mg

の硫黄とともに入れ,管状炉にて窒素雰囲気下で所定 の硫化温度まで 10℃/min で昇温後,2h 保持,放冷す ることで硫化した。得られた CTS 薄膜は,XRD, XRF, SEM により評価するともに,SiO₂/Mo/CTS/CdS/ZnO:Al /Al 構造のセルを作製し,起電力特性を評価した。

3. 結果および考察

Fig. 1 に CTS セルの光電変換効率の硫化温度依存性 を示す。600℃において最も良い特性となった。SEM 観察から,より高温で硫化した CTS 薄膜から硫化錫の 再蒸発によってピンホールが生じ,特性が低下したと 考えらえられる。

謝辞 本研究の一部は、高橋産業経済研究財団、JSPS 科研費

JP19H02663の助成により実施されました。また、分析は長岡高専オープンソリューションセンターで実施されました。

参考文献 1) M. Nakashima, *et al.*, Appl. Phys. Express, **8**, 042303 (2015). 2) J. Chantana, *et al.*, Sol. Energy Mater. Sol. Cells, **168**, 207 (2017). 3) F. Oliva *et al.*, J. Mater. Chem. A **5**, 23863 (2017).

ペロブスカイト半導体の光吸収スペクトルの第一原理計算: GaAs との比較 First-principles Calculation of Photo-absorption Spectra of Perovskite Semiconductors: Comparison to GaAs 初鹿純奈,石川真人,中山隆史 千葉大学 融合理工学府 物理学コース Junna Hatsushika, Masato Ishikawa, Takashi Nakayama

Department of Physics, Chiba University

Abstract Electronic and optical properties of solar-cell perovskite semiconductors such as CsPbI₃ are studies by the first-principles calculations and compared with conventional solar-cell semiconductors like GaAs. It is shown that, although the band structure is quite different between CsPbI₃ and GaAs, the photo-absorption has similar spectra in visible-light region. The reason of such similarity is analyzed based on their electronic structures.

1. はじめに

次世代太陽電池材料として期待されるペロブスカイト型半導体 (PS) は、従来の材料である GaAs 等と同程度の光電変換効率を持つが¹⁾、そのバンド構造は全く異なる。本研究では、第一原理計算を用いて、両者の光学的な共通・相違点を検討した。

2. 計算方法

PSとしてCsPbI3を採用し、第一原理計算で電子構造と光吸収スペクトルを求めた。

3. 結果および考察

Fig.1はCsPbI₃とGaAsの吸収端近くの 誘電関数(虚部、光吸収に相当)である。 太陽電池として重要な可視光領域では両 者は同程度の光吸収強度を持つことが分 かる。しかし、強度を光学遷移強度と対 状態密度に分解すると、遷移強度はGaAs が PS の約2倍の大きさを持ち、対状態

Fig.1 Dielectric functions of CsPbI₃ and GaAs.

密度は逆の大きさとなり、バンド構造の違いが見える。この結果は、欠陥や不純物が 出現すると、両者のスペクトルには異なった変化が現れることが予想される。また、 紫外光領域では GaAs の吸収が強く、その結果誘電率は GaAs の方が大きくなる。

謝辞:本研究は MEXT 科研費(17K05488)の助成を受け、物性研究所・分子科学研究 所・九州大学の計算機センターの計算機を利用しました。 参考文献:1) S. D. Wolf et al., J. Phys. Chem. Lett., **5**, 1035 (2014)

HGF 法による Br 添加 n 型 SnS 単結晶の育成と評価

Growth and evaluation of bromine-doped n-type SnS single crystals by HGF method

椚 俊智¹, 中川 瞭², 佐藤 孝一¹, 柳 博¹
1. 山梨大学大学院 医工農学総合教育部 工学専攻応用化学コース
2. 山梨大学 工学部 応用化学科

Masatomo Kunugi¹, Ryo Nakagawa², Koichi Sato¹, Hiroshi Yanagi¹ 1. Univ. Yamanashi, Integ. Grad. Sch. Med., Eng. and Agric. Sci., Appl. Chem. Course 2. Univ.Yamanashi, Faculty of Engineering, Department of Applied Chemistry

Abstract SnS is attracting attention as a next-generation solar cell material because it has abundant resources, low toxicity, high optical absorption coefficient, and suitable band gap for solar cell. In this study, we report the growth of Br-doped SnS single crystals by HGF method. The electron Hall mobility and carrier concentration were >100 cm²/Vs and ~10¹⁷ – 10¹⁸ cm⁻³, respectively.

1. はじめに

SnS は非毒性で資源豊富な元素で構成され、高光吸収係数と太陽電池に適したバンドギャップを有するため、次世代太陽電池材料として注目されている。しかしこれまでに報告されている SnS 太陽電池の変換効率は、4.36% と低い¹⁾。これは、p型 SnSと、n層に他の物質を用いるヘテロ接合に起因する。変換効率向上には、界面での欠陥低減と適切なバンドアライメントが実現するホモ接合が必要である。SnSのn型化は、Pb添加での報告はあるが²⁾、毒性元素(Pb)の使用が懸念される。当研究室では、Cl添加のn型化に成功し³⁾、Br添加によるn型化も報告された⁴⁾。本研究は、水平温度勾配固化法(HGF法)によるBr添加n型SnS単結晶の育成と評価について報告する。

2. 実験方法

Br 添加 SnS 単結晶を、HGF 法により育成した。秤量した Sn、S、SnBr2 を石英管中 に真空封入し、950□で12 時間加熱後に 900□まで降温させ、引き続き~800 □まで 50 時間かけて徐冷を行った。得られた試料は純水とエタノールで洗浄し、単結晶を得た。 XRD、EPMA、Hall 測定による評価を行った。

3. 結果および考察

得られた Br 添加 SnS 単結晶の写真を Fig. 1 に示す。一辺の長さが、~6 mm の板状の単結晶が得られた。EPMA より、Br 濃度は 0.1 から 0.3 at.% であった。Hall 測定の結果得られた試料はすべて、n 型伝導を示すことが明らかとなった。移動度は>100 cm²/Vs、キャリア濃度は $10^{17} \sim 10^{18}$ cm⁻³であった。

参考文献

1) P. Sinsermsuksakul, et. al., Adv. Energy. Mater., 4, 1400496 (2014).

- 2) F. R. Yong, et.al., and T. Kamiya, Sci. report., 5, 10428 (2015).
- 3) Y. Iguchi, et. al., Inorg. Chem., 57, 12 (2018).
- 4) X. Hu, et al., Scripta Materialia., 170, 99-105 (2019).

Fig. 1 Br doped SnS single crystals.

Zn 系半導体ナノ粒子の交互積層膜を用いた光学薄膜の作製と評価

Fabrication and evaluation of optical thin films prepared via layer-by-layer deposition of zinc-based semiconductor nanoparticles

木野 大地¹, 金 大貴², 脇田 和樹³, 沈 用球¹ 1. 大阪府大院工, 2. 大阪市立大院工, 3.千葉工大工 Daichi Kino¹, DaeGwi Kim², Kazuki Wakita³, YongGu Shim¹ 1. Osaka Pref. Univ., 2. Osaka City Univ., 3. Chiba Inst. Tech.

Abstract The optical thin films have been prepared via layer-by-layer deposition of ZnS and ZnSe nanoparticles on glass substrates. The thickness and optical constants of the prepared thin films were determined by spectroscopic ellipsometry. We demonstrated the applicability of multi-layered semiconductor nanoparticles as a material for optical thin films.

1. はじめに

半導体ナノ粒子(NP:直径数 nm)は、その種類、サイズ、組合せ、配列により光学定 数制御が可能なことや曲面への塗布も可能なことから、新しい光学薄膜用素材として の応用が期待できる。そこで、我々は半導体ナノ粒子積層膜の光学定数制御に関する 研究を行ってきた¹⁾。本研究では、ZnSe および ZnS ナノ粒子を用いて、Layer-by-Layer (LbL)法²⁾により、光学薄膜として必要となるナノスケールオーダーで膜厚を制御 したナノ粒子多積層膜を作製し、その膜厚、膜質、屈折率を評価した。

2. 実験方法

水熱合成法³⁾により作製した ZnS-NP(ϕ 2.5 nm)と ZnSe-NP(ϕ 3.0 nm)を LbL 法に よりガラス基板上に積層させたナノ粒子多積層膜を試料とした(各ナノ粒子を x 層積 層させた試料を(ZnS-NP)xおよび(ZnSe-NP)xと表記する)。測定は室温で分光エリプソ メータにより行い、解析には、ナノ粒子、カチオンポリマー分子、空隙を含む多積層 膜を混合単層膜と仮定した光学モデル(Fig.1 内挿図)を用い、ナノ粒子積層膜の膜厚と 光学定数を算出した。

3. 結果および考察

得られた(ZnS-NP)xの膜厚の解析結果を Fig.1 に示す。LBL 法による積層数を増やすことで、膜厚が線形に増加することが確認できた。また、積層膜の屈折率は、積層数

に依存せずおよそ一定の値 n=1.70±0.08@551nm を 示した。このことから、ナノ粒子積層数を制御する ことで、膜厚が制御可能で、かつ光学薄膜に必要な 一定の膜質を有する薄膜が作製できることがわか った。本研究により、半導体ナノ粒子多積層膜の屈 折率と膜厚を制御することで、多様な光学薄膜の 作製が可能であることを示すことができた。

参考文献

- 村上拓也 他, 第28回 光物性研究会論文集, Ⅱ B-88 (2017).
- 2) G. Decher, Science 277, 1232 (1997).
- H. B. Bu, *et al.*, Phys. Chem. Chem. Phys. 15, 2903 (2013).

Fig. 1 Thickness of (ZnS-NP)x films. (Insert) Optical model for ellipsometric analysis.

サニャック干渉計を用いた層状 TlGaSe₂における 光誘起変形の過渡応答特性評価

Transient response characteristics of light-induced deformation in layered TlGaSe₂ using Sagnac interferometer

北野 稜汰¹, 沈 用球¹, 脇田 和樹², Nazim Mamedov³

1. 阪府大院工, 2. 千葉工大工, 3. アゼルバイジャン科学アカデミー

Ryota Kitano¹, YongGu Shim¹, Kazuki Wakita², Nazim Mamedov³

1. Osaka Prefecture Univ., 2. Chiba Institute of Tech., 3. Azerbaijan Nat. Acad. Sci.

Abstract The time-resolved light-induced deformation phenomena in layered TlGaSe₂ has been investigated using Sagnac interferometer. The deformation occurred repeatedly in response to pump light irradiation. We successfully observed the transient response of the deformation with pulsed laser using Sagnac interferometer.

1. はじめに

近年、3元タリウム化合物半導体において、光照射による局所的かつ巨大な変形を 示す光誘起変形現象が見出された¹⁾。この現象を用いた光制御の駆動機構や光学素子 などへの応用展開が考えられ、本現象の特性や原因解明に向けて、光誘起変形の過渡 応答特性に関する情報が重要となる。これまで、我々はナイフエッジ法を用いた過渡 応答特性評価を行ってきたが²⁾、本研究では、より微小で高速な変形の観測およびイ メージング計測が可能なサニャック干渉計を用いた測定系³⁾の構築を目的とし、 TlGaSe₂の光誘起変形の過渡応答特性評価を行うことでその性能を評価した。

2. 実験方法

バルク単結晶の TlGaSe₂ (E_g: 2.1 eV) をサンプ ルとし、(001) 面を測定面とした。変形誘起用ポ ンプ光として、パルス時間幅、繰り返し周波数、 パワーを制御可能な半導体レーザ(λ : 406 nm)を 用いた。ポンプ光スポット直径は約0.5mmとした。 構築したサニャック干渉計³⁾において、プローブ 光として He-Ne レーザー(λ : 632.8 nm)を用い、 光誘起変形の過渡応答特性を測定した。

3. 結果と考察

Fig.1 に、構築した測定系を用いて測定した TlGaSe₂の光誘起変形の過渡応答特性を示す。ポン プ光照射時に変形量(Δh)が急激に増加し、ポン

Fig.1 Transient response of light -induced deformation in TlGaSe₂.

プ光照射終了後は緩慢な速度で減少していることがわかる。この結果は、ナイフエッジ法による測定結果²⁾と一致したことから、本測定系で適切な光誘起変形の過渡応答 測定が可能なことがわかった。今後、2次元イメージング計測やより微小な変形に対する測定を行うことで、本測定系の優位性を示し、光誘起弾性波の測定も目指す。 参考文献

N. Mamedov, K. Wakita, Y. Shim, K. Abe, N. Ogushi, Thin Solid Films **517**, 1434 (2008).
 北野稜汰 他, 第 66 回応用物理学会春季学術講演会, 10p-PA7-1 (2019).
 D. H. Hurley and O. B. Wright, Opt. Lett. **24**, 1305-1307 (1999)

T1InS₂における偏光フォノンスペクトルの温度依存性 Temperature dependence of polarized phonon spectra in TlInS₂ Chiba Inst. of Tech.¹, Osaka Prefecture Univ.², Azerbaijan Inst. of Phys.³ <u>Raul Paucar¹</u>, YongGu Shim²,

Kazuki Wakita¹, Oktay Alekperov³, Nazim Mamedov³

Chiba Inst. of Tech.^{1*}, Osaka Pref. Univ.², Azerbaijan Inst. of Phys.³

*E-mail: kazuki.wakita@it-chiba.ac.jp

TIInS₂ belongs to the group of ternary thallium dichalcogenides compounds with chemical formula TIMeX₂ (where Me = In or Ga, X = Se, S, or Te) which possess both layered (TIInS₂, TIGaS₂, TIGaSe₂) and chain (TIInSe₂, TIInTe₂, TIGaTe₂) structures [1]. These compounds attract particular interest because of the high degree of anisotropy in their physical properties and their potential for applications in optoelectronics. The polarized Raman spectra of layered TIInS₂ crystals are reported here. TIInS₂ single crystals were grown using the Bridgman-Stockbarger method and the obtained crystals could be easily cleaved into plane-parallel plates perpendicular to the crystallographic c*-axis which was set in the z-direction. The temperature of the sample placed in a special vibration-free cryostat was varied in the temperature range from 100 to 300 K, spanning successive phase transitions in TIInS₂ at Tc = 200 K and Ti = 216 K. Fig. 1 shows Raman spectra of TIInS₂ at respective of the crystal that was perpendicular to the (001) plane, so that the propagation direction of the incident and scattered light were perpendicular to the c*-axis. As expected the spectra for $x(zy)\overline{x}$ and $x(yz)\overline{x}$ geometries were identical, while the spectra for the $x(yy)\overline{x}$ and $x(zz)\overline{x}$ geometries can be seen in the frequency range of 35-120 cm⁻¹

and 300-400 cm⁻¹. To obtain more detailed information about the optical phonons in the obtained Raman spectra and their behaviour with changes in the temperature, the spectra were deconvolved into Loretzian peaks. The optical phonons that showed strong temperature dependence were identified as interlayer vibrations related to the phase transition [2], while the phonons that showed weak temperature dependence were identified as intralayer vibrations. Furthermore, we will present a preliminary assignment of the symmetry modes.

Acknowledgements

Refences

- [1] A. M. Panich, J. Phys.: Condens. Matter 20, 293202 (2008).
- [2] T. Chattopadhyay, et al., Phys. Rev. B 23. 2471 (1981).

This work was supported in part by the Ministry of Education, Culture, Sport, Science and technology, Japan, through a Grant-in-Aid (No. 26420278).

マイクロ領域における CZTS 薄膜のラマンマッピング評価

Raman mapping evaluation of CZTS thin film in micro-meter region

高橋 直¹, Raul Paucar¹, 脇田 和樹¹, 沈 用球², Nazim Mamedov³ 1. 千葉工業大学 工学研究科 電気電子情報工学専攻, 2. 大阪府立大学 工学研究科 電子・数物系専攻 電子物理工学分野, 3.アゼルバイジャン科学アカデミー Nao Takahashi¹, Raul Paucar¹, Wakita kazuki¹, Yong Shim², Nazim Mamedov³

1. Chiba Institute of Technology, Department of Electrical & Electronic Engineering.

2. Osaka Prefecture University, Graduate School of Engineering.

3. Institute of Physics, Azerbaijan National Academy of Sciences.

Abstract We reported the crystal structure on surface of CZTS films using Raman spectroscopy by two-dimensional scanning. The Cu₂S phase distributed on surface of CZTS film was evaluated to be 13.0 $(\mu m)^2$ by high-resolution Raman mapping approaching the diffraction limit.

1. はじめに

Cu₂ZnSnS₄(以降, CZTS)は希少・有毒元素を含まず、禁制帯エネルギーが約1.5 eV であるため、環境調和型太陽電池材料として期待されている。しかし、キャリア 再結合を誘発する光吸収層に分布する異相の存在は、変換効率の低下を引き起こす。 そのため、光吸収層のマイクロ領域における結晶構造の解析は実用化のため必要不可 欠となる。本研究では、共焦点顕微システムにより、CZTS 薄膜表面のマイクロ領域 における Cu₂S 相の分布や大きさを 2 次元走査によるラマン分光により解析した。

2. 結果および考察

以下に 600°Cにて S アニール処理を施した CZTS 薄膜を二次元ラマン走査した結果 を示す。Figure 1 は薄膜表面 5 μ m×5 μ m の範囲の Cu₂S A₁ モード付近(460~480 cm⁻¹)[1]のラマンマッピングであり、Figure 3 は Fig. 1 上の 6 点(F, G, B1-B4)におけるラ マンスペクトルである。Figure 3 から、点 B1-B4 の 4 点において Cu₂S のラマン信号 を観測した。これにより、Fig. 1 の青色を除いた領域において異相である Cu₂S 相が分 布していることがわかる。Figure 2 は Fig.1 で観測した Cu₂S 相の形状または大きさを 評価するため、ラマン信号強度の範囲を変更して再度マッピング表示したものである。 これにより、形状と共に面積を 13.0 (μ m)² と評価した。高分解能共焦点顕微システム を用いることで、薄膜表面に存在する異相の分布や形状、面積の評価を可能とした。

参考文献

[1] P.A.Fernandes, P.M.P.Salome, A.F.da Cunha. J. Alloys Compd. **509** (2011) 7600-7606.