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Optical determination of the band gap energy and Fermi level position in semiconductors
has a long history and dates back to the first studies on Si and Ge. Since then, many studies have
proved the effectiveness of the purely optical approach to the materials with concentration of donors
or acceptors that leaves Fermi level inside the band gap. Moving Fermi level above the bottom (top)
of the conduction (valence) band complicates the situation and requires the knowledge of the
effective masses of carriers; i. e. additional information beyond the data provided by optical
spectroscopy to obtain the band gap energy.

Especially complicated is the situation with 3D topological insulators which all are narrow
band-gap semiconductors with the energy gap inverted due to strong spin-orbital coupling and
considered as negative. It is enough to mention that in spite of numerous studies, using infrared
transmission and reflection spectroscopy, Shubnikov-de-Haas effect, angle resolved photoemission
spectroscopy, Hall effect measurements and extended theoretical calculations, including self-
consisted quasi-particle runs, a clear picture of the electronic bands at band gap is still in search
even for the most studied classic 3D van der- Waals topological insulators Bi,Ses, Bi,Tes and
Sb,Te; /1/

In this work a new optical plasmon-integrated approach to retrieve key band-gap -related

parameters of a narrow band-gap semiconductor with Fermi level outside the band gap is presented.

/1/ N. Mamedov et.al., Spectroscopic Ellipsometry and Infrared Optical Spectroscopy of Plasmons

in Classic 3D Topological Insulators, will appear in J. Vacuum Science & Technology (2019).
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First-principles study of defect properties in TIBr
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Abstract Thallium bromide (TIBr) is a promising semiconductor for the
fabrication of radiation detectors because of its large carrier mobility and
high gamma-ray stopping power. And, it is also known that the serious
degradation of performance is often observed in TIBr-based detectors
during the device operation, probably due to the carrier transport
degradation caused by the appearance of some crystal defects. However,
the origin of such defects is still unknown at present. In this work, we
study electronic properties of defects in TIBr and clarify the origin of
degradation, using the first-principles calculations.
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Theoretical Study of Halide Perovskites for Solar Cell and Optoelectronic
Applications
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Halide perovskites such as CH3NH3Pbls have recently emerged as promising
materials for low-cost, high-efficiency solar cells. The efficiency of perovskite-based
solar cells has increased rapidly, from 3.8% in 2009 to more than 25% recently by
modifying material compositions and engineering cell architectures and defect properties.
The emergence of high efficiency perovskite solar cells can be attributed to the intrinsic
properties that distinguish them from conventional semiconducting solar cell absorber
materials. However, despite the enormous progress of the perovskites in solar cell
applications, challenges are still standing in their way to large-scale commercial
applications, including their poor long-term stability, which could be partially attributed
to the intrinsic thermodynamic instability of CH3NH3Pbls and related materials, and the
toxicity of Pb, currently used in high efficiency halide perovskite based solar cells.
Recently, various approaches have been proposed to overcome these bottlenecks,
including defect control, alloying, as well as atomic transmutation. In this talk, I will
discuss some of our recent theoretical investigations on ordered and disordered halide
perovskites to understand their material properties and provide theoretical insights and
possible solutions to the usage of halide perovskites for solar cell and other optoelectronic
applications.



Effects of alkali-metals in CIGS and related multinary compounds
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Alkali-metals are widely known to be indispensable elements in enhancing Cu(In,Ga)Se:
(CIGS) solar cell device performance. To date, the beneficial effects of alkali-metals on not
only CIGS, but also on other compound solar cell devices such as Cu0Y, Cu,ZnSnSe4?, and
also organic-inorganic hybrid perovskite®* have been reported. Although the mechanisms
behind alkali-effects are still open to discussion, alkali-effects and the related control
techniques are attracting attention.

Alkali-effects on CIGS devices were found and reported in the early 1990s%, and thus, the
research history of the effects of alkali-metals on CIGS is relatively long compared with that
of other materials. In this talk, recent developments in alkali-effects control techniques on
CIGS are focused upon. Differences in alkali-effects observed with different doping
techniques, namely postdeposition treatment (PDT)® and diffusion from substrates” (Fig. 1),
and also different effects with various alkali-metal species are discussed. Developments in
alkali-doping techniques are key to demonstrate highly-efficient CIGS solar cell devices such
as ultra-light weight devices using alkali-free flexible substrates (Fig. 2).
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Fig. 1 Schematic of alkali-doping flexible CIGS solar cell.
techniques.
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Recent Progress and Future Prospects of CIS-based Thin-film
Solar Cell Technology — High Efficiency and New Applications
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Abstract In 2018, Solar Frontier K.K., a 100% subsidiary of Idemitsu Kosan Co.,Ltd.
achieved record cell efficiency of 23.35% on a 1-cm?-sized CIS-based cell with Zn-based
buffer layers. These buffer layers improved Voc loss when compared with the conventional
CdS buffer layer, regardless of the bandgap of CIS-based absorbers. This progress must be
advantages for new applications in the near future.
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Metastable effect on heavy alkali-metal treated CIGS solar cell

Research Center for Science and Technology, Tokyo Univ. of Science
Ishwor Khatri, Tzu Ying-Lin, Mutsumi Sugiyama, Tokio Nakada

Abstract  Heat-light soaking (HLS) effect on KF- and CsF- treated
CIGS thin-film of different CGI and GGI ratios is investigated. Alkali
treatment with Se vapor and higher CGI thin films shows improved Voc
after HLS. These results are inconsistent with the traditionally
established metastable effect due to the Vcu-Vse divacancy complex.

1. Introduction: Metastable effect on CIGS thin-film under light illumination or applied bias
voltage has been appeared from earlier”, which was described due to the change in vacancy
complex?. Both the positive and negative effects due to this metastability behavior on solar
cell performance have been reported. Recently, heavy-alkali metals (K, Rb and Cs) treatment
has been a hot topic to improve the cell efficiency. An existence of a new layer (or
composition) of alkali-metal has also been observed at the surface. In such solar cells, HLS
has guaranteed the improvement in Voc. The role of new layer and the effect of alkali metals
in the recent device structure during HLS have not been studied. Therefore, here we analyzed
the effect of CGI and selenium vapor during alkali-metal treatment to understand the
metastability on CIGS solar cells due to the Vcu-Vse vacancy.

2. Experimental Methods: CIGS solar cells were fabricated as described previously®. Heavy
alkali metals such as KF and CsF were deposited at the surface of the CIGS thin-film to
improve the device performance. Metastable behavior of the solar cells was investigated for
HLS or HBS treatments.

3. Results and discussion:

As seen in Fig. 1, the improved Voc of CsF-treated CIGS solar cells increased with
increasing CGI ratio, which contrasts with 50.0
KF-treated solar cells. The difference in atomic ~ |[OwioPDT
radii and diffusion velocities of Na, K and Cs w00 Q| @
atoms might have a major influence for the result.
K atoms diffuse more efficiently in CIGS bulk
region than that of Cs atoms during PDT. HLS, on
the other hand, redistribute alkali metals more 0.0 O 8 \®
effectively in CsF-treated solar cells, thereby, @’6/
varying the HLS result. Suppression of Vcu and
Vse (data not shown here) in the thin-film by ' cal
increasing CGI ratio and performing PDT in Se | Figure 1: Influence of Vo on alkali free, KF- and

. t: . CsF-treated CIGS solar cells as a function of CGI
vapor did not mitigate Voc improvement. These ratio. The symbol /A represents the difference in
results suggest that metastability of CIGS solar | solar cell parameters before and after HLS.
cells due to the Vcu-Vse divacancy complex itself
cannot account for the total beneficial effect of HLS in the heavy alkali-metal treated CIGS
solar cells. The details will be presented in the meeting.

200

AVOC (m V)

200 L e

References:

1)M. Igalson and H.W. Schock, J. Appl. Phys., 80, 5765 (1996).

2)S. Lany and A. Zunger, J. Appl. Phys., 100, 113725 (2006).

3)L. Khatri, J. Matsuura, M. Sugiyama and T. Nakada, Prog. Photovoltaic, 27, 22 (2019).



III-V high efficiency solar cells and their applications
Shiro Uchida', Shulong Lu?,

!Chiba Institute of Technology, Japan
2Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, China

Abstract

Two novel technologies to enhance the efficiencies in III-V solar cells are demonstrated. One is the room-
temperature wafer bonding which interface has a role of a tunnel junction, which enabled the fabrication of
an InGaP/GaAs//InGaAsP/InGaAs four-junction solar cell with 42.0% efficiency. The other is the optical
wireless power transmission technology using a laser beaming technology to a solar cell, which also offered
the higher efficiencies over 50.0%.

I. Multi-junction solar cells for CPV

InGaP/GaAs//InGaAsP/InGaAs four-junction (4J) solar cells grown by molecular beam epitaxy (MBE)
were demonstrated. Two epitaxial wafers based on GaAs and InP substrates with different lattice constants
were bonded by the novel room-temperature wafer bonding technology, which enabled to reduce the
electrical resistances and minimize the optical transmission loss. The lowest bond resistance of 2.5 x 107
Ohm cm?, ever reported for a GaAs/InP wafer bond, was achieved [1]. This lowest resistance was due to the
specific combination between p*-GaAs layer and n*-InP layer and the room-temperature wafer bonding with
an ion-beam. The I-V characteristics of the p"*-GaAs/ n*-InP bonding showed the linearity up to 10 A/cm?
like a tunnel junction. We estimated that it was due to the complex combination of a tunnel current and a
trap-assisted current. As a result, an efficiency of 42 % at 230 suns of the four-junction solar cell fabricated
by room-temperature wafer bonding was obtained as shown in a Fig.1.

II. Single-junction solar cells for optical wireless power transmission (OWPT)

OWPT is expected to be higher-power and longer distance transmission technology compared to a
conventional electromagnetic wireless power transmission. The power conversion efficiencies of single-
junction GaAs solar cells with irradiation of laser beams from laser diode [2] were investigated.

Conversion efficiencies were calculated by dividing the measured Pmax (= ImaxVmax) by the irradiated laser
beam power. We used the GaAs cells with the efficiency of 25.9% under AM1.5G 1-sun. To improve an
efficiency of GaAs cell, we changed the shaded area of the grid fingers from 1% to 5%. The GaAs solar cell
with 5% grid kept a relative higher efficiency over 40.0% at a laser input power of near 1W, as shown in Fig.
2. As a result, efficiency of GaAs solar cell was improved up to 52.7% at the laser power of 4-suns. The
efficiencies of GaAs solar cells in this system will be furthermore improved by introducing the optimum grid
finger structures and anti-reflecting coatings.
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Optical properties of surface modified Si-based multilayer structures
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Noticeable metallization of silicon thin layers on insulator (SOI) with surface-grating has
recently been disclosed and accounted for the increased number of conduction electrons due to
depression of the occupied quantum states in these systems [1, 2]. It is important to mention that
above increase in conduction electron concentration, or so- called geometry-induced doping (G-
doping) results from re-arrangement in electron eigenstates. In other words, the effect of G-doping
on optical transitions is expected in some region above the energy gap of a semiconductor with
surface-grating.

In this work we use photoluminescence and spectroscopic ellipsometry to track down the effect
of G-doping on optical transitions and interband density of states in thin surface-grated layer (SG-
layer) of a silicon on insulator (SOI). The grating period was below the wavelength of the probing
light and though higher but yet comparable with electron de Broglie wavelength. The last remark
is important since G-doping takes place in such cases as well, according to the experimental
observations [3].

A grating was fabricated in the Si device layer of an SOI wafer. For a device layer thickness in
the range of 60-100 nm, the SG line width was 150 nm and the indent depth was 10-30 nm. In line
with expectations, observed from surface-grating, the high energy broad emission band with partly
resolved and almost equidistant peaks is indicative of the irradiative transitions from electronic
eigenstates. Moreover, the position of emission band depends on excitation wavelength.
Photoluminescence spectra of the SG layers are discussed in terms of G-doping theory, assuming
that peaks in the PL spectrum correspond to transitions, related to energy levels in the surface-
grating quantum well.

We have ellipsometrically studied Si/SiO2 /SOI structures for the cases when SG is absent and
present in the top Si layer. We have managed to retrieve dielectric function of the top Si layer in
both cases and have shown that presence of SG in this layer leads to dramatic transformation of
the dielectric function due to metallization induced by G-doping. The retrieved results are
consistent with the results obtained for resistivity and photoluminescence on similar structures.
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Defect and secondary phase of Cuz(Sn,Ge)S; thin films deposited by co-evaporation
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Abstract  The sulfurization effect of Cux(Sni—,Gey)S3 (CTGS) thin
films deposited by low-temperature co-evaporation was investigated.
The defect properties of CTGS films before and after sulfurization were
estimated using photoluminescence and Raman spectroscopy.
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Investigation of RF sputter VO2 on the glass substrate for the intelligent green house
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Abstract RF sputtered VO; thin film was directly deposited on the soda
lime glass for intelligent green house. The dependence of crystallinity
with RF power, ambient gas and thermochromic characteristic of the VO2
thin film will be presented in detail.
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Development of lift-off method for CIGS solar cell using sacrificial layers
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Abstract In this work, we will develop a method to lift off CIGS solar
cells from glass substrates. ZnO layer is formed as a sacrificial layer
between the glass substrate and the Mo layer that is the back electrode of
the CIGS solar cell. The CIGS solar cell is lifted off from the glass
substrate by etching only the ZnO layer in an acetic acid. In this study,
we will report that the Mo layer is lifted off from the glass substrate in
acetic acid for a sample with Mo/ZnO/SLG structure.
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Device analysis of CIGS; / CIGSe, tandem solar cell
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Ushin Rai, Kazuyoshi Nakada, Akira Yamada
Dept. of Electrical and Electronic Engineering, Tokyo Tech

Abstract  To perform the calculation of Cu(In,Ga)S2/ Cu(In,Ga)Se;
tandem-type solar cells, we introduced a recombination layer between
the top and bottom cell. We have successfully calculated the cell
performance by optimizing the recombination layer. It was found that an
efficiency of 36.6% can be obtained with a bottom-cell bandgap of 1.1
eV and a top-cell bandgap of 1.8 eV.
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Fig. 1 Efficiency of tandem solar cell
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Preparation of Cu2Sni-xGexS3 thin films on Mo substrates by sol-gel sulfurization method

I REE, W AfZ
R BB 2R
Daiki Otogawa, Kunihiko Tanaka
Nagaoka University of Technology
Email : tanaka@vos.nagaokaut.ac.jp

Abstract Preparation of Cu2Sni»GexS3 (CTGS) thin films on Mo
substrates by sol-gel sulfurization method was investigated. To prevent
degradation of a Mo layer, Cu-Sn low concentration solution was coated
on the Mo layer, after then Cu-Sn-Ge high concentration solution was
coated. The precursor was sulfurized in H2S (3%) + N2 atmosphere.
XRD patterns of deposited films showed a peak between Cu2SnS3 and
Cu2GeSs.
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Study on Cu/IV ratio dependence of Cu2Sni-+SixS3 by luminescence observation
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°Tatsuya Tsukame', Kunihiko Tanaka'
Nagaoka Univ. Tech. Dep. of Electrical, Electronics and Information Eng. !

Abstract

Cu2Sni1.SixS3 (CTSiS) is a potential material for cost effective and non-toxic absorber in thin
films solar cells. However, basic physical properties of CTSiS have not been fully
investigated. Therefore, Polycrystaline CTSiS was grown by solid state reaction, and
observed Photo luminescence.
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Fig. 1 PL spectra of Cu2Sn1-xSixS3.
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Fabrication of Cu2GeSs thin-film solar cells from co-evaporated films
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Ryota Ohashi?, Yoji Akaki2, Hideaki Araki!
1. National Institute of Technology, Nagaoka College,
2. National Institute of Technology, Miyakonojo College

Abstract Cu2GeS3 (CGS) thin films were produced by the
co-evaporation of Cu, Ge, and cracked sulfur, followed by annealing.
The films were then used to fabricate photovoltaic cells with the
structure glass/Mo/CGS/CdS/ZnO:Al/Al
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Fig.1 Raman spectra of the as-deposited and annealed thin films.
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Fabrication of Cu2SnSs thin-films solar cells via sulfurization at high temperatures
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1. National Institute of Technology, Nagaoka College, 2. National Institute of Technology, Miyakonojo
College, 3. National Institute of Technology, Wakayama College, 4. National Institute of Technology,
Tsuyama College, 5. National Institute of Technology, Ishikawa College

Abstract  Cu2SnSs (CTS) thin-films were prepared by sulfurization at
high temperatures on a quartz substrate with a softening point higher
than that of soda lime glass. CTS-based solar cells were also successfully
fabricated using the obtained thin films, and the crystal growth of the
films was observed with increasing sulfurization temperature. The solar
cell comprising a CTS thin film with a sulfurization temperature of
600°C exhibited the optimum performance among the cells examined.
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First-principles Calculation of Photo-absorption Spectra of Perovskite Semiconductors:
Comparison to GaAs
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Abstract Electronic and optical properties of solar-cell perovskite semiconductors such as
CsPbls are studies by the first-principles calculations and compared with conventional solar-
cell semiconductors like GaAs. It is shown that, although the band structure is quite different
between CsPbls and GaAs, the photo-absorption has similar spectra in visible-light region.
The reason of such similarity is analyzed based on their electronic structures.
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Growth and evaluation of bromine-doped n-type SnS
single crystals by HGF method
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2. Univ.Yamanashi, Faculty of Engineering, Department of Applied Chemistry

Abstract  SnS is attracting attention as a next-generation solar cell
material because it has abundant resources, low toxicity, high optical
absorption coefficient, and suitable band gap for solar cell. In this study,
we report the growth of Br-doped SnS single crystals by HGF method. The
electron Hall mobility and carrier concentration were >100 cm?/Vs and
~10'7 — 10" cm, respectively.
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Fabrication and evaluation of optical thin films prepared via
layer-by-layer deposition of zinc-based semiconductor nanoparticles
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Abstract  The optical thin films have been prepared via layer-by-layer deposition of ZnS and
ZnSe nanoparticles on glass substrates. The thickness and optical constants of the prepared thin
films were determined by spectroscopic ellipsometry. We demonstrated the applicability of
multi-layered semiconductor nanoparticles as a material for optical thin films.
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Transient response characteristics of light-induced deformation
in layered TIGaSe; using Sagnac interferometer
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Abstract The time-resolved light-induced deformation phenomena in layered
TlGaSe, has been investigated using Sagnac interferometer. The deformation
occurred repeatedly in response to pump light irradiation. We successfully
observed the transient response of the deformation with pulsed laser using
Sagnac interferometer.
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T1InS; belongs to the group of ternary thallium dichalcogenides compounds with chemical formula TIMeX;
(where Me = In or Ga, X = Se, S, or Te) which possess both layered (TlInS,, TlGaS,, TlGaSe;) and chain
(TlInSe,, TlInTe,, TlGaTe;) structures [1]. These compounds attract particular interest because of the high
degree of anisotropy in their physical properties and their potential for applications in optoelectronics. The
polarized Raman spectra of layered TlInS, crystals are reported here. T1InS; single crystals were grown using the
Bridgman-Stockbarger method and the obtained crystals could be easily cleaved into plane-parallel plates
perpendicular to the crystallographic c*-axis which was set in the z-direction. The temperature of the sample
placed in a special vibration-free cryostat was varied in the temperature range from 100 to 300 K, spanning
successive phase transitions in TlInS; at Tc = 200 K and Ti = 216 K. Fig. 1 shows Raman spectra of TlInS,
crystal in the x(yy)x, x(zy)x,x(yz)x and x(zz)Xx polarization geometries. The Raman spectra were
measured in the backscattering configuration on the surface of the crystal that was perpendicular to the (001)
plane, so that the propagation direction of the incident and scattered light were perpendicular to the c*-axis. As
expected the spectra for x(zy)x and x(yz)x geometries were identical, while the spectra for the x(yy)x and

x(zz)x geometries exhibited differences. These differences can be seen in the frequency range of 35-120 cm'!

and 300-400 cm™. To obtain more detailed information about

the optical phonons in the obtained Raman spectra and their
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Fig. 1 Polarized Raman spectrum of TlInS, at 300 K.
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Raman mapping evaluation of CZTS thin film in micro-meter region
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Abstract We reported the crystal structure on surface of CZTS films using
Raman spectroscopy by two-dimensional scanning. The Cu2S phase
distributed on surface of CZTS film was evaluated to be 13.0 (um)* by
high-resolution Raman mapping approaching the diffraction limit.
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Fig. 1 Raman mapping image Fig. 2 Evaluation of size of Fig. 3 Raman spectra at
of Cu2S phase (Spmx5um). CuzS phase on Fig. 1. 6 points on Fig. 1.
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